Vertically Aligned Carbon Nanotubes Transfer with Glass Frit

Article Preview

Abstract:

Nanogetters, based on carbon nanotubes (CNTs) coated Ti films, do have higher pumping speed and possibly larger sorbed quantity compared with traditional getters, such as St175 of SAES [1]. Although the nanogetter is with the outstanding performance, it is still hard to be integrated into micro electro mechanical systems (MEMS) packaging and devices due to high growth temperature of CNTs (>700°C) [2], poor adhesion with substrate [3, 4], vulnerability to pollute the wafers and difficulty to pattern. Therefore, this paper proposes a promotion of nanogetter based on transferring out vertically aligned CNTs (VA-CNTs) utilizing the glass frit. Compared with the conventional nanogetters, the promotion processes have advantages of (1) compatibility to the MEMS materials with controllable melting temperature and coefficient of thermal expansion (CTE), (2) Enhancement of the adhesion between CNTs and substrate, (3) Avoiding polluting the package wafer during CNTs growth. The results indicate that the promotion processes can be fulfilled by the silicon wafers and have wide applications such as nanogetters, field emission display, etc.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

406-411

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Songping Chen, Daoheng Sun, Liwei Lin, Nanogetters for MEMS hermetic packaging, Proceedings of the 7th IEEE International Conference on Nanotechnology. (2007) 921-924.

DOI: 10.1109/nano.2007.4601334

Google Scholar

[2] M. Ellis, B. Duong, S. Seraphin, Growing carbon nanotubes vertically and horizontally to the substrate: a review, Rangsit Journal of Arts and Sciences. 2 (2012) 161-174.

Google Scholar

[3] O. Yaglioglu, R. Martens, A. John Hart, A. H. Slocum, Conductive carbon nanotube composite microprobes, Adv. Mater. 20 (2008) 357-362.

DOI: 10.1002/adma.200700075

Google Scholar

[4] L.B. Zhu, Y.Y. Sun, D. W. Hess, C.P. Wong, Well-aligned open-ended carbon nanotube architectures: an approach for device assembly, Nano letters. 6 (2006) 243-247.

DOI: 10.1021/nl052183z

Google Scholar

[5] D. W. Youngner, L. M. Lust, D. R. Carlson, et al., A manufacturable chip-scale atomic clock, in Proc. IEEE Transducers '07 & Eurosensors XXI Conf. (2007) 39-44.

DOI: 10.1109/sensor.2007.4300066

Google Scholar

[6] J. Kitching, S. Knappe, E. A. Donley, Atomic sensors-a review, IEEE Sensors J. 11 (2011) 1749-1758.

DOI: 10.1109/jsen.2011.2157679

Google Scholar

[7] M Hasegawa, R K Chutani, R Boudot, et al., Effects of getters on hermetically sealed micromachined cesium–neon cells for atomic clocks, J. Micromech. Microeng. 23 (2013) 055022.

DOI: 10.1088/0960-1317/23/5/055022

Google Scholar

[8] A. Kumar, V. L. Pushparaj, S. Kar, et al. Contact transfer of aligned carbon nanotube arrays onto conducting substrates, Applied Physics Letters. 89 (2006) 163120.

DOI: 10.1063/1.2356899

Google Scholar

[9] C.C. Chiu, T.Y. Tsai, N.H. Tai, Field emission properties of carbon nanotube arrays through the pattern transfer process, Nanotechnology. 17 (2006) 2840-2844.

DOI: 10.1088/0957-4484/17/12/002

Google Scholar

[10] S. Chakrabarti, T. Nagasaka, Y. Yoshikawa, et al., Growth of super long aligned brush-like carbon nanotubes, Jpn. J. Appl. Phys. 45 (2006) 720-722.

DOI: 10.1143/jjap.45.l720

Google Scholar

[11] M. C. Lee, S. J. Kang, K. D. Jung, et al., A high yield rate MEMS gyroscope with a packaged SiOG process, J. Micromech. Microeng. 15 (2005) 2003-(2010).

DOI: 10.1088/0960-1317/15/11/003

Google Scholar

[12] P. M. Ajayan, S. lijima, Capillarity-induced filling of carbon nanotubes, Nature. 361 (1993) 333-334.

DOI: 10.1038/361333a0

Google Scholar

[13] E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki, Capillarity and wetting of carbon nanotubes, Science. 265 (1994) 1850-1855.

DOI: 10.1126/science.265.5180.1850

Google Scholar