Research on Fabrication and Electronic Characteristics of Dual-Extended Nano Structure Memristor

Article Preview

Abstract:

This paper proposes a novel dual-extended nanostructure memristor model compared to HP memristor can be called Single-extended memristor. Oxygen ions and oxygen vacancies all are effective carriers in this memristor as the structure are made of TiO2-x/TiO2/TiO2+x three nanolayers between Pt electrodes.The sample of dual-extended memristors arrays were fabricated by ways which these cost-effective methods can be exploited to produce memristors with nanoscale electrode width. Dual-extended nanostructure memristor model will be represented and the mechanism will be discussed. Fabrication methods of the memristor device are introduced and the electronic characteristics are measured and plotted. The results are discussed will experimentally demonstrated that higher switching speed and lower power will be gained by using dual-extended memristors to design IC.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

728-733

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Leon O Chua, Memristor-The Missing Circuit Element, IEEE Transaction On Circuit Theory, vol ct-l 8. No. 5 Sep l971.

Google Scholar

[2] D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, The missing memristor found, Nature, vol. 453, May 1, 2008, pp.80-83.

DOI: 10.1038/nature06932

Google Scholar

[3] Wendianzhong, Baixiaohui, Nanostructure Quick-Switch Memristor And Method Of Manufacturing The Same[P], Patent No: US8487, 294, B2, Date of Patent: Jul. 16, (2013).

Google Scholar

[4] T. Prodromakis, K. Michelakis and C. Toumazou. Practical micronano fabrication implementations of memristive devices. 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA), (2010).

DOI: 10.1109/cnna.2010.5430323

Google Scholar

[5] Gregory S Snider, et al. Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18 , (2007).

DOI: 10.1088/0957-4484/18/3/035204

Google Scholar

[6] International Roadmap Committee. International Technology Roadmap for Semiconductors 2007 EditionExecutive Summary. ITRS Winter Conference 2007, Makuhari Messe, Japan, (2007).

Google Scholar

[7] Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 2007, p.833–840.

DOI: 10.1038/nmat2023

Google Scholar

[8] C. Nauenheim, et al. Integration of Resistively Switching TiO2 Cells into Micro Crosspoint Cells. Sympsium D: electronic materials , (2008).

Google Scholar

[9] Tzu-Ning Fang, et al. Erase Mechanism for Copper Oxide Resistive Switching Memory Cells with NickelElectrode. Electron Devices Meeting, 2006. IEDM '06.

Google Scholar

[10] R. S. Williams. How We Found The Missing Memristor, IEEE Spectrum, vol. 45, Dec. 2008, pp.28-35.

DOI: 10.1109/mspec.2008.4687366

Google Scholar

[11] J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, Memristive switching mechanism for metal/ oxide/metal nanodevices, Nature Nanotechnology, vol. 3, July. 2008, pp.429-33.

DOI: 10.1038/nnano.2008.160

Google Scholar

[12] S. Adee, Resistance to memristance, IEEE Spectrum, vol. 45, Dec. 2008, p.34.

Google Scholar

[13] J. M. Tour and T. He, The fourth element, Nature, vol. 453, May. 1, 2008, pp.42-43.

Google Scholar

[14] C. Kugeler, C. Nauenheim, M. Meier, A. Rudiger and R. Waser, Fast resistance switching of TiO2 and MSQ thin films for nonvolatile memory applications (RRAM), 9th Annual Non-Volatile Memory Technology Symposium, 11-14 Nov. 2008, pp.1-6.

DOI: 10.1109/nvmt.2008.4731195

Google Scholar

[15] Y. V. Pershin and M. Di Ventra, Spin memristive systems: Spin memory effects in semiconductor spintronics, Physical Review B, vol. 78, Article no. 113309, Sep. (2008).

DOI: 10.1103/physrevb.78.159905

Google Scholar

[16] J. Wu and R. L. McCreery, Solid-State Electrochemistry in Molecule/TiO2 Molecular Heterojunctions as the Basis of the TiO2 Memristor, Jl. Electrochem. Soc., vol. 156, Jan. 2009, pp.29-37.

DOI: 10.1149/1.3021033

Google Scholar

[17] M. Jagadesh Kumar. Memristor – Why Do We Have to Know About It? IETE TECHNICAL REVIEW | Vol 26 ISSUE 1 JAN-FEB (2009).

DOI: 10.4103/0256-4602.48462

Google Scholar

[18] Frank Y. Wang. Memristor for introductory physics . physics. class-ph 4 Aug (2008).

Google Scholar

[19] T. Fujii, et al. Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxideSchottky junction SrRuO3/SrTi0. 99Nb0. 01O3. Appl. Phys. Lett,. vol. 86, Dec 2008, p.012107.

DOI: 10.1063/1.1845598

Google Scholar

[20] Han Y P, Ye H A, WuW Z, et al. Fabrication of Ag and Cu nanowires by a solid - state ionic method and investigation of their third - order non2 linear optical properties. Materials Letters, 2008, 62: 2806 - 2809.

DOI: 10.1016/j.matlet.2008.01.059

Google Scholar

[21] D. C. Kim, et al. Electrical observations of filamentary conductions for the resistive memory switching inNiO films. Appl. Phys. Lett 88, 202102, (2006).

Google Scholar

[22] Ignatiev, A. et al. Resistance switching in perovskite thin films. Phys. Stat. Sol. B 243, 2006, p.2089–(2097).

DOI: 10.1002/pssb.200666805

Google Scholar

[23] Cong Xu, Xiangyu Dong, Norman P. Jouppi, and Yuan Xie. Design Implications of Memristor-Based RRAM Cross-Point Structures. 2011 EDAA, (2011).

DOI: 10.1109/date.2011.5763125

Google Scholar

[24] Yenpo Ho et. al. Dynamical properties and design analysis for nonvolatile memristor memories, IEEE transactions on circuits and systems—I: regular papers, vol. 58, no. 4, April (2011).

DOI: 10.1109/tcsi.2010.2078710

Google Scholar