[1]
M. Koç and T. Altan, An overall review of the tube hydroforming (THF) technology, J. Mater. Process. Technol., 108(2001), 384-393.
DOI: 10.1016/s0924-0136(00)00830-x
Google Scholar
[2]
M. Ahmetoglu and T. Altan, Tube hydroforming: state-of-the-art and future trends, J. Mater. Process. Technol., 98(2000) 25-33.
DOI: 10.1016/s0924-0136(99)00302-7
Google Scholar
[3]
F. Dohmann and C. Hartl, Hydroforming - a method to manufacture light-weight parts, J. Mater. Process. Technol., 60(1996) 669-676.
DOI: 10.1016/0924-0136(96)02403-x
Google Scholar
[4]
S. M. Farimani, H. Champliaud, J. Gholipour, J. Savoie, P. Wanjara, Numerical and experimental study of tube hydroforming for aerospace applications, Key Eng. Mater., 554-557(2013), 1779-1786.
DOI: 10.4028/www.scientific.net/kem.554-557.1779
Google Scholar
[5]
X. Élie-dit-Cosaque, M. S. Chebbah, H. Naceur and A. Gakwaya, Analysis and design of hydroformed thin-walled tubes using enhanced one-step method, Int. J. Adv. Manuf. Technol., 59(2012), 507-520.
DOI: 10.1007/s00170-011-3539-4
Google Scholar
[6]
C.H.M. Simha, J. Gholipour,A. Bardelcik and M. J. Worswick, Prediction of necking in tubular hydroforming using an extended stress-based forming limit curve, J. Eng. Mater. Technol., 129(2006), 36-47.
DOI: 10.1115/1.2400269
Google Scholar
[7]
M. Saboori, H. Champliaud, J. Ghoulipor, A. Gakwaya, J. Savoie, P. Wanjara, Study of true stress-strain curve after necking for application in ductile fracture criteria in tube hydroforming of aerospace material, Key Eng. Mater., 504-506 (2012).
DOI: 10.4028/www.scientific.net/kem.504-506.95
Google Scholar
[8]
A. Fiorentino, E. Ceretti, C. Giardini, Tube hydroforming compression test for friction estimation—numerical inverse method, application, and analysis, Int. J. Adv. Manuf. Technol., 64(2013), 695-705.
DOI: 10.1007/s00170-012-4044-0
Google Scholar
[9]
M. Anderson, J. Gholipour, F. Bridier, P. Bocher, M. Jahazi, J. Savoie and P. Wanjara, Improving the formability of stainless steel 321 through multistep deformation for hydroforming applications, T. CAN. SOC. MECH. ENG., 37 (2013), 39-52.
DOI: 10.1139/tcsme-2013-0003
Google Scholar
[10]
M. Saboori, H. Champliaud, J. Gholipour, A. Gakwaya, J. Savoie and P. Wanjara, Evaluating the flow stress of aerospace alloys for tube hydroforming process by free expansion testing, submitted to Int. J. Adv. Manuf. Technol., DOI: 10. 1007/s00170-013-5588-3.
DOI: 10.1007/s00170-014-5670-5
Google Scholar
[11]
K. Trana, Finite element simulation of the tube hydroforming process—bending, preforming and hydroforming, J. Mater. Process. Technol., 127(2002), 401-408.
DOI: 10.1016/s0924-0136(02)00432-6
Google Scholar
[12]
J. Gholipour, M. J. Worswick, D. A. Oliveira and G. Khodayari, Severity of the Bend and Its Effect on the Subsequent Hydroforming Process for Aluminum Alloy Tube, AIP Conf. Proc., 712(2004), 1089-1094.
DOI: 10.1063/1.1766673
Google Scholar
[13]
L. Gao, M. Strano, FEM analysis of tube pre-bending and hydroforming, J. Mater. Process. Technol., 151(2004), 294-297.
DOI: 10.1016/j.jmatprotec.2004.04.076
Google Scholar
[14]
R. Bihamta, G. D'Amours, Q. -H. Bui, M. Guillot, A. Rahem, M. Fafard, Numerical and experimental studies on the new design concept of hydroforming dies for complex tubes, Mater. Des., 47(2013), 766-788.
DOI: 10.1016/j.matdes.2012.12.075
Google Scholar
[15]
LS-DYNA keyword user's manual, version 971, vol. 2. Livermore Software Technology Corporation.
Google Scholar