Numerical and Experimental Study of Preforming Stage in Tube Hydroforming

Article Preview

Abstract:

The preforming stage in hydroforming of an aerospace generic shape was investigated using a combination of experimentation and numerical modeling. The preform die was manufactured using a rapid prototyping method, namely the selective laser sintering (SLS) process. The preforming experiments were conducted on 0.9 mm and 1.2 mm thick stainless steel 321 (SS321) tubes. To evaluate the preforming process, an automated deformation measurement system, ARGUS®, was used to measure the 3-dimensional (3D) strains on the deformed tubes. Data collected from the experiments were used to validate the simulation of the preforming stage. The simulation and experimental results were found to be in good agreement, indicating that the preform model can be used as a starting point for simulating the tube hydroforming (THF) process. In addition, the SLS approach was found to be very promising, as it reduced greatly the lead time and cost of process development for THF.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

1132-1138

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Koç and T. Altan, An overall review of the tube hydroforming (THF) technology, J. Mater. Process. Technol., 108(2001), 384-393.

DOI: 10.1016/s0924-0136(00)00830-x

Google Scholar

[2] M. Ahmetoglu and T. Altan, Tube hydroforming: state-of-the-art and future trends, J. Mater. Process. Technol., 98(2000) 25-33.

DOI: 10.1016/s0924-0136(99)00302-7

Google Scholar

[3] F. Dohmann and C. Hartl, Hydroforming - a method to manufacture light-weight parts, J. Mater. Process. Technol., 60(1996) 669-676.

DOI: 10.1016/0924-0136(96)02403-x

Google Scholar

[4] S. M. Farimani, H. Champliaud, J. Gholipour, J. Savoie, P. Wanjara, Numerical and experimental study of tube hydroforming for aerospace applications, Key Eng. Mater., 554-557(2013), 1779-1786.

DOI: 10.4028/www.scientific.net/kem.554-557.1779

Google Scholar

[5] X. Élie-dit-Cosaque, M. S. Chebbah, H. Naceur and A. Gakwaya, Analysis and design of hydroformed thin-walled tubes using enhanced one-step method, Int. J. Adv. Manuf. Technol., 59(2012), 507-520.

DOI: 10.1007/s00170-011-3539-4

Google Scholar

[6] C.H.M. Simha, J. Gholipour,A. Bardelcik and M. J. Worswick, Prediction of necking in tubular hydroforming using an extended stress-based forming limit curve, J. Eng. Mater. Technol., 129(2006), 36-47.

DOI: 10.1115/1.2400269

Google Scholar

[7] M. Saboori, H. Champliaud, J. Ghoulipor, A. Gakwaya, J. Savoie, P. Wanjara, Study of true stress-strain curve after necking for application in ductile fracture criteria in tube hydroforming of aerospace material, Key Eng. Mater., 504-506 (2012).

DOI: 10.4028/www.scientific.net/kem.504-506.95

Google Scholar

[8] A. Fiorentino, E. Ceretti, C. Giardini, Tube hydroforming compression test for friction estimation—numerical inverse method, application, and analysis, Int. J. Adv. Manuf. Technol., 64(2013), 695-705.

DOI: 10.1007/s00170-012-4044-0

Google Scholar

[9] M. Anderson, J. Gholipour, F. Bridier, P. Bocher, M. Jahazi, J. Savoie and P. Wanjara, Improving the formability of stainless steel 321 through multistep deformation for hydroforming applications, T. CAN. SOC. MECH. ENG., 37 (2013), 39-52.

DOI: 10.1139/tcsme-2013-0003

Google Scholar

[10] M. Saboori, H. Champliaud, J. Gholipour, A. Gakwaya, J. Savoie and P. Wanjara, Evaluating the flow stress of aerospace alloys for tube hydroforming process by free expansion testing, submitted to Int. J. Adv. Manuf. Technol., DOI: 10. 1007/s00170-013-5588-3.

DOI: 10.1007/s00170-014-5670-5

Google Scholar

[11] K. Trana, Finite element simulation of the tube hydroforming process—bending, preforming and hydroforming, J. Mater. Process. Technol., 127(2002), 401-408.

DOI: 10.1016/s0924-0136(02)00432-6

Google Scholar

[12] J. Gholipour, M. J. Worswick, D. A. Oliveira and G. Khodayari, Severity of the Bend and Its Effect on the Subsequent Hydroforming Process for Aluminum Alloy Tube, AIP Conf. Proc., 712(2004), 1089-1094.

DOI: 10.1063/1.1766673

Google Scholar

[13] L. Gao, M. Strano, FEM analysis of tube pre-bending and hydroforming, J. Mater. Process. Technol., 151(2004), 294-297.

DOI: 10.1016/j.jmatprotec.2004.04.076

Google Scholar

[14] R. Bihamta, G. D'Amours, Q. -H. Bui, M. Guillot, A. Rahem, M. Fafard, Numerical and experimental studies on the new design concept of hydroforming dies for complex tubes, Mater. Des., 47(2013), 766-788.

DOI: 10.1016/j.matdes.2012.12.075

Google Scholar

[15] LS-DYNA keyword user's manual, version 971, vol. 2. Livermore Software Technology Corporation.

Google Scholar