[1]
K.K. Wang, P. Nagappan, Transient Temperature Distribution in Inertia Welding of Steels, Welding Journal 49 (1970) 419.
Google Scholar
[2]
V. Balasubramanian, Y. Li, T. Stotler, J. Crompton, N. Katsube, W. Soboyejo, Numerical simulation of inertia welding of Inconel 718, ASME-Publications-PVP 369 (1997) 289-296.
DOI: 10.7449/1997/superalloys_1997_719_719
Google Scholar
[3]
V. Balasubramanian, Y.L. Li, T. Stotler, J. Crompton, A. Soboyejo, N. Katsube, W. Soboyejo, A new friction law for the modelling of continuous drive friction welding: Applications to 1045 steel welds, Materials and Manufacturing Processes 14 (1999).
DOI: 10.1080/10426919908914877
Google Scholar
[4]
L.B. Yang, J.C. Gebelin, R.C. Reed, Modelling of inertia welding of IN718 superalloy, Materials science and technology 27 (2011) 1249-1264.
DOI: 10.1179/1743284710y.0000000022
Google Scholar
[5]
G. Bendzsak, T. North, Z. Li, Numerical model for steady-state flow in friction welding, Acta Materialia 45 (1996) 1735-1745.
DOI: 10.1016/s1359-6454(96)00280-7
Google Scholar
[6]
G. Madhusudhan Reddy, P. Venkata Ramana, Role of nickel as an interlayer in dissimilar metal friction welding of maraging steel to low alloy steel, Journal of materials processing technology 212 (2012) 66-77.
DOI: 10.1016/j.jmatprotec.2011.08.005
Google Scholar
[7]
P. Stevens, S. Bray, P. Bowen, High strain rate shear zone properties in an inertia friction weld, ASM International, Member/Customer Service Center Materials Park OH 44073-0002 United States (2010).
Google Scholar
[8]
C. Bennett, M. Attallah, M. Preuss, P. Shipway, T. Hyde, S. Bray, Finite Element Modeling of the Inertia Friction Welding of Dissimilar High-Strength Steels, Metallurgical and Materials Transactions A (2013) 1-11.
DOI: 10.1007/s11661-013-1852-2
Google Scholar
[9]
L. Wang, M. Preuss, P.J. Withers, G. Baxter, P. Wilson, Energy-input-based finite-element process modeling of inertia welding, Metall Mater Trans B 36 (2005) 513-523.
DOI: 10.1007/s11663-005-0043-y
Google Scholar
[10]
P.A. Colegrove, H.R. Shercliff, 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile, Journal of materials processing technology 169 (2005) 320-327.
DOI: 10.1016/j.jmatprotec.2005.03.015
Google Scholar
[11]
M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, W.A. Wakeham, Reference data for the density and viscosity of liquid aluminum and liquid iron, Journal of physical and chemical reference data 35 (2006).
DOI: 10.1063/1.2149380
Google Scholar
[12]
M. Wu, A. Vakhrushev, G. Nummer, C. Pfeiler, A. Kharicha, A. Ludwig, Importance of melt flow in solidifying mushy zone, energy 1 (2010) 6.
DOI: 10.2174/1877729501002010016
Google Scholar
[13]
S. -I. Oh, T. Altan, Metal forming and the finite-element method, Oxford university press, (1989).
Google Scholar
[14]
Ansys, Fluent User Guide, 14.
Google Scholar
[15]
K. Lee, A. Samant, W. Wu, S. Srivatsa, Finite element modeling of inertia welding processes, Proceedings of the NUMIFORM Conference, Japan, 2001, pp.1095-1100.
Google Scholar
[16]
M. Mohammed, C. Bennett, P. Shipway, T. Hyde, Optimization of heat transfer in the finite element process modelling of inertia friction welding of SCMV and AerMet 100, Advanced Computational Methods and Experiments in Heat Transfer 11 68 (2010).
DOI: 10.2495/ht100221
Google Scholar
[17]
C.W. Hirt, B.D. Nichols, Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries, Journal of computational physics 39 (1981) 201-225.
DOI: 10.1016/0021-9991(81)90145-5
Google Scholar
[18]
D. Youngs, Time-dependent multi-material flow with large fluid distortion, Numerical methods for fluid dynamics 24 (1982) 273-285.
Google Scholar