[1]
A. Forcellese, F. Gabriella, Artificial neural-network-based control system for springback compensation in press-brake forming, Int. J. Mater. Prod. Tec. 16 (2001) 545-563.
DOI: 10.1504/ijmpt.2001.001280
Google Scholar
[2]
R. Teimouri, H. Baseri, B. Rahmani, M. Bakhshi-Jooybari, Modeling and optimization of springback in bending process using multiple regression analysis and intelligent computation, Int. J. Mater. Form. DOI 10. 1007/s12289-012-1117-4.
DOI: 10.1007/s12289-012-1117-4
Google Scholar
[3]
G.S. Schajer, Measurement of non-uniform residual stresses using the hole-drilling method, J. Eng. Mater. Technol. 110(4) (1988) 338-343.
DOI: 10.1115/1.3226059
Google Scholar
[4]
I.C. Noyan, J.B. Cohen, Residual stress: measurement by diffraction and interpretation, SpringerVerlag, New York, (1986).
Google Scholar
[5]
H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed., Wiley-VCH, (1974).
Google Scholar
[6]
F. Chinesta, A. Leygue, F. Bordeu, J.V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar, A. Huerta, PGD-based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng. 20 (2013) 31-59.
DOI: 10.1007/s11831-013-9080-x
Google Scholar
[7]
A. Nouy, Proper generalized decompositions and separarepresentations for the numerical solution of high dimensional stochastic problems, Arch. Comput. Methods. Eng. 17 (2010) 403-434.
DOI: 10.1007/s11831-010-9054-1
Google Scholar
[8]
S. Niroomandi, I. Alfaro, E. Cueto, F. Chinesta, Real-time deformable models of non-linear tissues by model reduction techniques, Comput. Methods Programs Biomed. 91 (2008) 223-231.
DOI: 10.1016/j.cmpb.2008.04.008
Google Scholar
[9]
S. Niroomandi, I. Alfaro, E. Cueto, F. Chinesta, Real time simulation of surgery by reduced order modelling and X-FEM techniques, Int. J. Numer. Methods Biomed. Eng. 28(5) (2012) 574-588.
DOI: 10.1002/cnm.1491
Google Scholar
[10]
Ch. Ghnatios, F. Masson, A. Huerta, E. Cueto, A. Leygue, F. Chinesta, Proper generalized decomposition based dynamic data-driven control of thermal processes, Comput. Methods Appl. Mech. Eng. 213 (2012) 29-41.
DOI: 10.1016/j.cma.2011.11.018
Google Scholar
[11]
F. Chinesta, P. Lavedeze, E. Cueto, A short review in Model Order Reduction based on Proper Generalized Decomposition, Arch. Comput. Methods Eng. 18 (2011) 395-404.
DOI: 10.1007/s11831-011-9064-7
Google Scholar
[12]
J.M. Dorlot, J.P. Ba¨ılon, Des Mat´eriaux, 3rd ed., Presses Internationales Polytechnique, Montr´eal, 2002 (in french).
Google Scholar
[13]
EN 515 Aluminium and aluminium alloys. Wrought products. Temper designations, European Committee for Standarization, Brussels, (1993).
DOI: 10.3403/00315137
Google Scholar
[14]
O.C. Zienkiewicz, P.N. Godbolet, Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes, Int. J. Numer. Methods Eng. 8 (1974) 3-16.
DOI: 10.1002/nme.1620080102
Google Scholar
[15]
O.C. Zienkiewicz, E. Onate, J.C. Heinrich, Plastic flow in metal forming. (I) Coupled thermal (II) Thin sheet forming, Applications of numerical methods to forming processes 28 (1978) 107- 120.
Google Scholar
[16]
J. Lof, Y. Blokhuis, FEM simulations of the extrusion of complex thin-walled aluminium sections, J. Mater. Process Technol. 122 (2002) 344-354.
DOI: 10.1016/s0924-0136(01)01266-3
Google Scholar
[17]
S.A. Smoljak, Quadrature and interpolation formulae on tensor products of certain function classes, Dokl. Akad. Nauk SSSR 148 (1963) 1042-1045.
Google Scholar
[18]
T. Gerstner, M. Griebel, Numerical integration using sparse grids, Numer. Algorithms 18(34) (1998) 209-232.
Google Scholar
[19]
P. Ladev`eze, The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables, Comptes Rendus Acad´emie des Sciences Paris, 309, 1095-1099, (1989).
Google Scholar
[20]
J.C. Simon, T.J.R. Hughes, Computational Inelasticity, Springer, (1991).
Google Scholar