Methods for the Numerical Modelling of the Adhesive Interlayer of Sandwich-Sheets in Case of Coupled Thermo-Mechanical FE-Analysis

Article Preview

Abstract:

Bending of multilayered sheets like lightweight sandwich sheets or fiber reinforced thermoplastics is dominated by the mechanism of interply-slip. FE-analysis is performed to predict defects depending on this mechanism. The shear and damage behavior of the adhesive layer of sandwich sheets can be modeled by cohesive elements in Abaqus. Forming simulation of fiber reinforced thermoplastics requires coupled thermo-mechanical analysis methods due to temperature dependence. For this, alternative modeling strategies for the inner layer of adhesive or polymer matrices will be tested in this paper that are able to transfer heat. The layer will be presented by solid elements with enriched property definitions or viscoplasticity. Furthermore the thickness of the layer will be neglected and replaced by contact formulations or spring elements.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

1364-1370

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Kessler, Simulation der Umformung organisch beschichteter Feinbleche und Verbundwerkstoffe mit der FEM, Berichte aus der Fertigungstechnik. Aachen, Shaker, (1997).

Google Scholar

[2] B. Engel, J. Buhl, Metal forming of vibration-damping composite sheets, steel research international. Volume 82, Issue 6, pages 626–631, June, (2011).

DOI: 10.1002/srin.201000205

Google Scholar

[3] B. Engel, J. Buhl, Forming of sandwich sheets considering changing damping properties, Metal Forming, INTECH. Iran, (2012).

DOI: 10.5772/50565

Google Scholar

[4] J. Buhl, A. Schneider, Grundlagenentwicklung für ein leises Profil, 2. Biegeforum. Februar (2013).

Google Scholar

[5] K. Vanclooster, S.V. Lomov, I. Verpoest, Investigation of interply shear in composite forming, International Journal of Material Forming. Vol. 1, 1 (Suppl. ), pp.957-960, (2008).

DOI: 10.1007/s12289-008-0216-8

Google Scholar

[6] L. Gamache, J. A. Sherwood, J. Chen and J. Cao, Characterisation of fabric/tool and fabric/fabric friction during the thermostamping process, Proceedings of the tenth Esaform Conference on Material Forming. (2007).

DOI: 10.1063/1.2729656

Google Scholar

[7] R. Akkerman, R. ten Thije, U. Sachs, M. de Rooij, Friction in textile thermoplastic composites formin, Recent Advances in Textile Composites, pp.271-279, (2010).

Google Scholar

[8] B. Engel, J. Brühmann, Study of interplay slip during thermoforming of continous fiber composite materials, Proceedings of the19th International Conference on Composite Materials (ICCM-19). Montréal, Canada, (2013).

Google Scholar

[9] A.M. Murtagh, M.R. Monoghan and P.J. Mallon, Investigation of the Interply Slip Process in Continuous Fibre Thermoplastic Composites. Proceedings of ICCM 9, ed, Miravete, Madrid, (1994) 311-318.

Google Scholar

[10] R. Scherer, Charakterisierung des Zwischenlagengleitens beim Thermoformen von Kontinuierlich faserverstärkten Polypropylen-Laminaten, Fortschrittberichte VDI. Reihe 5: Grund- und Werkstoffe, Nr. 288, (1993).

Google Scholar

[11] E. Gazo-Hanna, A. Poitou, P. Casari, L. Juras, Study of interply slip during thermoforming of continous fiber composite materials. Proceedings of the18th International Conference on Composite Materials (ICCM-18). Jeju Island, Korea, (2011).

Google Scholar

[12] A.F. Johnson, T. Keilig, A.K. Pickett, Numerische Simulation des Formgebungsprozesses von endlosfaserverstärkten Thermoplasten, Werkstoffwoche, Symposium 8: Simulation, Modellierung, Informationssysteme. Stuttgart, (1996).

Google Scholar

[13] Abaqus 6. 11 Online Documentation, Dassault Systèmes, (2011).

Google Scholar