Automatic Parameter Classification for Dimension Reduction as Basis for Robust Parameter Identification

Article Preview

Abstract:

This paper presents a fully automatic parameter classification procedure in order to identify the most influencing parameters together with locally interesting parts of the component considered in a certain processing step. The results of this classification approach are used for a parameter space reduction in order to minimize the computational effort for subsequent analysis and optimization tasks based on forecast models. In particular, an outlook on the evaluation of radial basis function metamodels for a robust parameter identification is given. We demonstrate the classification procedure and its benefits by an industrially relevant deep drawing process of a pan with secondary design elements.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

1383-1389

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Bellman: Adaptive Control Processes: A Guided Tour, Princeton University Press (1961).

Google Scholar

[2] D. Steffes-lai and T. Clees: Statistical analysis of forming processes as a first step in a processchain analysis: novel PRO-CHAIN components, Key Engineering Materials 504 - 506: 631 - 636 (2012).

DOI: 10.4028/www.scientific.net/kem.504-506.631

Google Scholar

[3] D. Steffes-lai: Approximation Methods for High Dimensional Simulation Results - Parameter Sensitivity Analysis and Propagation of Variations for Process Chains, PhD Thesis, Universität zu Köln, Mathematisches Institut (2014).

Google Scholar

[4] H. Rabitz, M. Kramer and D. Dacol: Sensitivity analysis in chemical kinetics, Annual Review of Physical Chemistry 34: 419-461 (1983).

DOI: 10.1146/annurev.pc.34.100183.002223

Google Scholar

[5] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana and S. Tarantola: Global Sensitivity Analysis - The Primer, John Wiley & Sons (2008).

DOI: 10.1002/9780470725184

Google Scholar

[6] D. Steffes-lai, S. Turck, C. Klimmek and T. Clees: An efficient knowledge based system for the prediction of the technical feasibility of sheet metal forming processes, Key Engineering Materials 554 - 557: 2472 - 2478 (2013).

DOI: 10.4028/www.scientific.net/kem.554-557.2472

Google Scholar

[7] I. Nikitin, L. Nikitina and T. Clees: Stochastic Analysis and nonlinear metamodeling of crash test simulation and their application in automotive design, in Computational Engineering: Design, Development and Applications, edited by F. Columbus, Nova Science, New York (2011).

Google Scholar

[8] R. Jain and I. Chlamtac: The P2 Algorithm for Dynamic Calculation of Quantiles and Histograms Without Storing Observations, Communications of the ACM 28: 1076 - 1085 (1985).

DOI: 10.1145/4372.4378

Google Scholar