[1]
M. Geiger, A. Messner, U. Engel, Production of microparts – size effects in bulk metal forming, similarity theory, Production Engineering IV/1 (1997) 55 – 58.
Google Scholar
[2]
F. Vollertsen, H.N. Schulze, Z. Hu, State of the art in micro forming, International Journal of Machine Tools & Manufacture 46 (2006) 1172 – 1179.
DOI: 10.1016/j.ijmachtools.2006.01.033
Google Scholar
[3]
G. -Y. Kim, M. Koc, Modelling of the size effect on the behaviour of metals in microscale deformation processes, Transactions of the ASME 129 (2007) 470 – 476.
Google Scholar
[4]
J. Jeon, A.N. Bramley, A friction model for micro forming, Int. J. Adv. Manuf. Technol. 33 (2007) 125 – 129.
Google Scholar
[5]
M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, Micro forming. Annals of the CIRP №2(50) (2001) 445 – 462.
DOI: 10.1016/s0007-8506(07)62991-6
Google Scholar
[6]
User's guide QForm, Theoretical formulation and finite element technique, information on www. qform3d. ru/db_files/326/1256. pdf (stand on the 01. 12. 2013).
Google Scholar
[7]
V. Perfilov, M. Petrov, P. Petrov, Development and Research on Near Net Shape Forging Technology of Round Part with Flange made of Aluminium Alloy A95456, in: Jan Kusiak et al. (Eds. ), Proceeding of the 10th International Conference on Metal Forming «MetalForming», Cracow, 2004, p.631.
DOI: 10.1016/j.jmatprotec.2006.03.206
Google Scholar
[8]
A.A. Milenin, A.N. Golovko, I. Mamuzic, The application of three-dimensional computer simulation when developing dies for extrusion of aluminium shapes, Metallurgia №1 (41) 53 – 55 (in Russian).
Google Scholar
[9]
N. Biba, A. Lishny, A. Milenin, Two levels approach to the problem of extrusion process optimization, in: Proceedings of the 6th International Conference on Numerical Methods in Industrial Forming Processes «NUMIFORM», Netherlands, 1998, p.627.
Google Scholar
[10]
A.N. Levanov, V.L. Kolmogorov, S.P. Burkin, B.R. Kartak, U.V. Ashpur, U.I. Spasskiy, Contact friction in metal forging, Metallurgia Publisher, Moscow, 1976 (in Russian).
Google Scholar
[11]
P. Petrov, J. Bast, M. Petrov, V. Voronkov, M. Schajchulov, Numerische Vergleichsanalyse der Methoden zur Abschätzung der Reibung in Umformprozessen, Tribologie und Schmierungstechnik 5 (2011) 10 – 14 (in German).
Google Scholar
[12]
P. Petrov, V. Voronkov, K. Potapenko, V. Ivanov, The Effect of transient change in strain rate on plastic flow behaviour of Al-Mg-Si alloy at elevated temperatures, in: G. Minary (Eds. ), AIP Conference Proceedings 1353: Proceedings of the 14th International Conference on Material Forming (Esaform 2011), Springer Verlag, Berlin 2011, p.374.
DOI: 10.1063/1.3589544
Google Scholar
[13]
B. -A. Behrens, H. Conrads, F. Schäfer, Modellierung von Größeneinflüssen in der Warmmassivumformung, in: Größeneinflüsse bei Fertigungsprozessen. Beiträge zum Abschlusskolloquium des SPP 1138, Bonn, (2009).
Google Scholar
[14]
B. -A. Behrens, H. Conrads, P.A. Petrov, Rheological behaviour of AW-6082 aluminum alloy at elevated temperatures within wide range of strain rates, Steel research international 79 (2008) 261 – 264.
Google Scholar
[15]
Z. Gronostajski, A general model describing flow stress of copper alloys in different deformation conditions, J. Mater. Proc. Techn. 142 (2003) 684 – 691.
DOI: 10.1016/s0924-0136(03)00805-7
Google Scholar
[16]
J.J. Urcola, C.M. Sellars, A model for a mechanical equation of state under continuously changing conditions of hot deformation, Acta Metallurgica 35 (11) (1987) 2659 – 2669.
DOI: 10.1016/0001-6160(87)90265-3
Google Scholar