Identification of Anisotropic Yield Criterion Parameters from a Single Biaxial Tensile Test

Article Preview

Abstract:

The present work deals with the calibration strategy of yield functions used to describe the plastic anisotropic behavior of metallic sheets. In this paper, Bron and Besson yield criterion is used to model the plastic anisotropic behavior of AA5086 sheets. This yield model is flexible enough since the anisotropy is represented by 12 parameters (4 isotropic parameters and 8 anisotropic parameters in plane stress condition) in the form of two linear fourth order transformation tensors. The parameters of this anisotropic yield model have been identified from a single dedicated cross biaxial tensile test. It is shown, from finite element simulations, that the strain distribution in the center of the cruciform specimen is significantly dependent on the yield criterion. Moreover, this cross biaxial test involves a large range of strain paths in the center of the specimen. The calibration stage is performed by means of an optimization procedure minimizing the gap between experimental and numerical values of the principal strains along a specified path in the gauge area of the cruciform specimen. It is shown that the material parameters of Bron and Besson anisotropic yield model can be determined accurately by a unique biaxial tensile test.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

1710-1717

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Banabic, Sheet Metal Forming Processes: Constitutive Modeling and Numerical Simulation, Springer. (2010).

Google Scholar

[2] S. L. Zang, S. Thuillier, A. Le Port, and P. Y. Manach, Prediction of anisotropy and hardening for metallic sheets in tension, simple shear and biaxial tension, Int. J. Mech. Sci. 53 (2011) 338–347.

DOI: 10.1016/j.ijmecsci.2011.02.003

Google Scholar

[3] Y. S. Suh, F. I. Saunders, and R. H. Wagoner, Anisotropic yield functions with plastic-strain-induced anisotropy, Int. J. Plast. 12 (1996) 417–438.

DOI: 10.1016/s0749-6419(96)00014-9

Google Scholar

[4] S. Zang and M. Lee, A General Yield Function within the Framework of Linear Transformations of Stress Tensors for the Description of Plastic‐strain‐induced Anisotropy, AIP Conf. Proc. 1383 (2011) 63–70.

DOI: 10.1063/1.3623593

Google Scholar

[5] W. Hu, Constitutive modeling of orthotropic sheet metals by presenting hardening-induced anisotropy, Int. J. Plast. 23 (2007) 620–639.

DOI: 10.1016/j.ijplas.2006.08.004

Google Scholar

[6] P. D. Barros, M. C. Oliveira, J. L. Alves, and L. F. Menezes, Earing Prediction in Drawing and Ironing Processes Using an Advanced Yield Criterion, Key Eng. Mater. 554–557 (2013) 2266–2276.

DOI: 10.4028/www.scientific.net/kem.554-557.2266

Google Scholar

[7] H. Wang, M. Wan, X. Wu, and Y. Yan, The equivalent plastic strain-dependent Yld2000-2d yield function and the experimental verification, Comput. Mater. Sci. 47 (2009) 12–22.

DOI: 10.1016/j.commatsci.2009.06.008

Google Scholar

[8] F. Bron and J. Besson, A yield function for anisotropic materials Application to aluminum alloys, Int. J. Plast. 20 (2004) 937–963.

DOI: 10.1016/j.ijplas.2003.06.001

Google Scholar

[9] D. E. Green, K. W. Neale, S. R. MacEwen, A. Makinde, and R. Perrin, Experimental investigation of the biaxial behaviour of an aluminum sheet, Int. J. Plast. 20 (2004) 1677–1706.

DOI: 10.1016/j.ijplas.2003.11.012

Google Scholar

[10] M. Teaca, I. Charpentier, M. Martiny, and G. Ferron, Identification of sheet metal plastic anisotropy using heterogeneous biaxial tensile tests, Int. J. Mech. Sci. 52 (2010) 572–580.

DOI: 10.1016/j.ijmecsci.2009.12.003

Google Scholar

[11] G. Ferron, R. Makkouk, and J. Morreale, A parametric description of orthotropic plasticity in metal sheets, Int. J. Plast. 10 (1994) 431–449.

DOI: 10.1016/0749-6419(94)90008-6

Google Scholar

[12] P. A. Prates, J. V. Fernandes, M. C. Oliveira, N. A. Sakharova, and L. F. Menezes, On the characterization of the plastic anisotropy in orthotropic sheet metals with a cruciform biaxial test, IOP Conf. Ser. Mater. Sci. Eng. 10 (2010) 012142.

DOI: 10.1088/1757-899x/10/1/012142

Google Scholar

[13] I. Zidane, D. Guines, L. Léotoing, and E. Ragneau, Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets, Meas. Sci. Technol. 21 (2010) 055701.

DOI: 10.1088/0957-0233/21/5/055701

Google Scholar

[14] S. Zhang, L. Léotoing, D. Guines, S. Thuillier, Calibration of material parameters of anisotropic yield criterion with conventional tests and biaxial test, Proceedings Esaform (2013).

DOI: 10.4028/www.scientific.net/kem.554-557.2111

Google Scholar