[1]
A. Murphy, T. Ekmekyapar, D. Quinn, M. Özakça, G. Moore, J. Niblock, The influence of assembly friction stir weld location on wing panel static strength, Thin-Walled Structures, 76 (2014) 56-64.
DOI: 10.1016/j.tws.2013.11.004
Google Scholar
[2]
A. Murphy, W. McCune, D. Quinn, M. Price, The characterisation of friction stir welding process effects on stiffened panel buckling performance, Thin-Walled Structures, 45 (2007) 339-351.
DOI: 10.1016/j.tws.2007.02.007
Google Scholar
[3]
A. Murphy, M. Price, R. Curran, Integration of strength and process modeling of friction-stir-welded fuselage panels, Journal of Aerospace Computing, Information and Communication, 3 (2006) 159-176.
DOI: 10.2514/1.17694
Google Scholar
[4]
J.K. Paik, A.K. Thayamballi, J.Y. Ryu, J.H. Jang, J.K. Seo, S.W. Park, S.K. Seo, C. Renaud, H.P. Cojeen, N.I. Kim, The statistics of weld induced inicial imperfections in aluminium stiffened plate structures for marine applications, International Journal of Maritime Engineering, 148 (2006).
Google Scholar
[5]
R.M.F. Paulo, P. Carlone, R.A.F. Valente, F. Teixeira-Dias, G.S. Palazzo, Integrated design and numerical simulation of stiffened panels including friction stir welding effects, Key Engineering Materials, 554-557 (2013) 2237-2242.
DOI: 10.4028/www.scientific.net/kem.554-557.2237
Google Scholar
[6]
R.M.F. Paulo, P. Carlone, R.A.F. Valente, F. Teixeira-Dias, G.S. Palazzo, Influence of friction stir welding residual stresses on the compressive strength of aluminium alloy plates, Thin-Walled Structures, 74 (2014) 184-190.
DOI: 10.1016/j.tws.2013.09.012
Google Scholar
[7]
R.M.F. Paulo, F. Teixeira-Dias, R.A.F. Valente, Numerical simulation of aluminium stiffened panels subjected to axial compression: Sensitivity analyses to initial geometrical imperfections and material properties, Thin-Walled Structures, 62 (2013).
DOI: 10.1016/j.tws.2012.07.024
Google Scholar
[8]
M.R. Sonne, C.C. Tutum, J.H. Hattel, A. Simar, B. de Meester, The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3, Journal of Materials Processing Technology, 213 (2013) 477-486.
DOI: 10.1016/j.jmatprotec.2012.11.001
Google Scholar
[9]
M.B. Prime, Cross-sectional mapping of residual stresses by measuring the surface contour after a cut, Journal of Engineering Materials and Technology, 123 (2001) 162–168.
DOI: 10.1115/1.1345526
Google Scholar
[10]
P. Carlone, G.S. Palazzo, Longitudinal Residual Stress Analysis in AA2024-T3 Friction Stir Welding, The Open Mechanical Engineering Journal, 7 (2013) 18-26.
DOI: 10.2174/1874155x01307010018
Google Scholar
[11]
ABAQUS, Abaqus Documentation (v. 6. 9). Simulia Dassault Systémes, (2010).
Google Scholar
[12]
P. Carlone, G.S. Palazzo, Influence of Process Parameters on Microstructure and Mechanical Properties in AA2024-T3 Friction Stir Welding, Metallogaphy Microstrucure and Analysis, 2 (2013) 213-222.
DOI: 10.1007/s13632-013-0078-4
Google Scholar
[13]
D.G. Richards, P.B. Prangnell, S.W. Williams, P.J. Withers, Global mechanical tensioning for the management of residual stresses in welds, Materials Science and Engineering A, 489 (2008) 351-362.
DOI: 10.1016/j.msea.2007.12.042
Google Scholar