[1]
C.Y. Lee, D.H. Choi, Y.M. Yeon, S.B. Jung, Dissimilar friction stir spot welding of low carbon steel and Al–Mg alloy by formation of IMCs, Science and Technology of Welding and Joining 14 (2009) 216–220.
DOI: 10.1179/136217109x400439
Google Scholar
[2]
P. Carlone, G.S. Palazzo, Longitudinal residual stress analysis in AA2024-T3 friction stir welding, The Open Mechanical Engineering Journal 7 (2013), 18–26.
DOI: 10.2174/1874155x01307010018
Google Scholar
[3]
G. Bussu, P.E. Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints, International Journal of Fatigue 25 (2003) 77–88.
DOI: 10.1016/s0142-1123(02)00038-5
Google Scholar
[4]
M.N. James, D.J. Hughes, Z. Chen, H. Lombard, D.G. Hattingh, D. Asquith, J.R. Yates, P.J. Webster, Residual stresses and fatigue performance, Engineering Failure Analysis 14 (2007), 384–395.
DOI: 10.1016/j.engfailanal.2006.02.011
Google Scholar
[5]
P. Carlone, R. Citarella, M. Lepore, G.S. Palazzo, A FEM-DBEM investigation of the influence of process parameters on crack growth in aluminum friction stir welded butt joints, Key Eng. Mat. 554–557 (2013), 2118–26.
DOI: 10.4028/www.scientific.net/kem.554-557.2118
Google Scholar
[6]
Y.J. Chao, X. Qi, Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6, Journal of Materials Processing and Manufacturing Science 7 (1998), 215–233.
DOI: 10.1106/ltkr-jfbm-rgmv-wvcf
Google Scholar
[7]
O.R. Myhr, O. Grong, Process modeling applied to 6082-T6 aluminum weldments. Part 1: Reaction kinetics. Part 2: Applications of model. Acta Metal 39 (1991), 2693–2708.
DOI: 10.1016/0956-7151(91)90085-f
Google Scholar
[8]
M.R. Sonne, C.C. Tutum, J.H. Hattel, A. Simar, B. de Meester, The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3, Journal of Materials Processing Technology 213 (2013) 477– 486.
DOI: 10.1016/j.jmatprotec.2012.11.001
Google Scholar
[9]
Schmidt, H., Hattel, J., 2008. Thermal modelling of friction stirwelding. Scripta Materialia 58, 332–337.
DOI: 10.1016/j.scriptamat.2007.10.008
Google Scholar
[10]
Genevois, C., Deschamps, A., Denquin, A., Doisneau-cottignies, B., 2005. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Materialia 53, 2447–2458.
DOI: 10.1016/j.actamat.2005.02.007
Google Scholar
[11]
A. Simar, Y. Bréchet, B. de Meester, A. Denquin, C. Gallais, T. Pardoen, Integrated modeling of friction stir welding of 6xxx series Al alloys: process, microstructure and properties, Progress in Materials Science 57 (2012), 95–183.
DOI: 10.1016/j.pmatsci.2011.05.003
Google Scholar
[12]
D.G. Richards, P.B. Pragnell, S.W. Williams, P.J. Withers, Global mechanical tensioning for the management of residual stresses in welds, Materials Science and Engineering A A489 (2008), 351–362.
DOI: 10.1016/j.msea.2007.12.042
Google Scholar
[13]
M.B. Prime, Cross-sectional mapping of residual stresses by measuring the surface contour after a cut, Journal of Engineering Materials and Technology 123 (2001), 162–168.
DOI: 10.1115/1.1345526
Google Scholar
[14]
P. Carlone, G.S. Palazzo, Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding. Metallography, Microstructure and Analysis 2 (2013), 213–222.
DOI: 10.1007/s13632-013-0078-4
Google Scholar
[15]
D.A. Price, S.W. Williams, A. Wescott, J.C. Harrison, A. Rezai, A. Steuwer, M. Peel, P. Staron, M. Koak, Distortion control in welding by mechanical tensioning, Science and Technology of Welding and Joining 12 (2007), 620–633.
DOI: 10.1179/174329307x213864
Google Scholar
[16]
J. Altenkirch, A. Steuwer, P.J. Withers, S.W. Williams, M. Poad, S.W. Wen, Residual stress engineering in friction stir welds by roller tensioning, Science and Technology of Welding and Joining 14 (2009), 185–192.
DOI: 10.1179/136217108x388624
Google Scholar