[1]
P. Oliver, M. Cavarero, Comparison between longitudinal tensile characteristics of thin and thick thermoset composite laminates: influence of curing conditions, Comput. Struct., 76 (2000), 125-137.
DOI: 10.1016/s0045-7949(99)00161-3
Google Scholar
[2]
E. Ruiz, F. Trochu, Numerical Analysis of cure temperature and internal stresses in thin and thick RTM parts, Compos. Part A: Appl. S., 36 (2005), 806-826.
DOI: 10.1016/j.compositesa.2004.10.021
Google Scholar
[3]
W. -B. Young, Compacting pressure and cure cycle for processing of thick composite laminates, Compos. Sci. Technol., 54 (1995), 299-306.
DOI: 10.1016/0266-3538(95)00067-4
Google Scholar
[4]
S. Yi, H.H. Hilton, M.F.A. Ahmad, A finite element approach for cure simulation of thermosetting matrix composites, Comput. Struct., 64 (1996), 383-388.
DOI: 10.1016/s0045-7949(96)00156-3
Google Scholar
[5]
V.A.F. Costa, A.C.M. Sousa, Modeling of flow and thermo-kinetics during the cure of thick laminated composites, Int. J. Therm. Sci., 42 (2003), 15-22.
DOI: 10.1016/s1290-0729(02)00003-0
Google Scholar
[6]
P. Carlone, G.S. Palazzo, Thermo-chemical and rheological finite element analysis of the cure process of thick carbon-epoxy composite laminates, Int. J. Mater. Form., 2 (2009), 137-140.
DOI: 10.1007/s12289-009-0450-8
Google Scholar
[7]
P. Carlone, G.S. Palazzo, A multi-scale non-deterministic approach to composite curing process simulation, Adv. Mater. Res., 750-752 (2013), 11-15.
DOI: 10.4028/www.scientific.net/amr.750-752.11
Google Scholar
[8]
A. Mawardi, R. Pitchumani, Optimal cure and current cycles for curing of composites using embedded resistive heating elements, J. Manuf. Sci. E-T ASME, 122 (2000), 124-131.
DOI: 10.1115/1.1527903
Google Scholar
[9]
P. Dufour, D.J. Michaud, Y. Tourè, P.S. Dhurjati, A partial differential equation model predictive control strategy: application to autoclave composite processing, Comput. Chem. Eng., 28 (2004), 545-556.
DOI: 10.1016/j.compchemeng.2003.08.007
Google Scholar
[10]
E. Ruiz, F. Trochu, Multi-criteria thermal optimization in liquid composite molding to reduce processing stresses and cycle time, Compos. Part A: Appl. S., 37 (2006), 913-924.
DOI: 10.1016/j.compositesa.2005.06.010
Google Scholar
[11]
P. Carlone, G.S. Palazzo, Composite laminates cure cycle optimisation by meta-heuristic algorithms, Int. J. Mater. Prod. Tec., 46 (2013), 106–123.
DOI: 10.1504/ijmpt.2013.056297
Google Scholar
[12]
I. Baran, C.C. Tutum, J.H. Hattel, Optimization of the thermosetting pultrusion process by using hybrid and mixed integer genetic algorithms, Appl. Compos. Mater., 20 (2013), 449-463.
DOI: 10.1007/s10443-012-9278-3
Google Scholar
[13]
Aleksendrić D., Senatore A. Optimization of manufacturing process effects on brake friction material wear, Journal of Composite Material, 46 (22), 2012, 2777-2791.
DOI: 10.1177/0021998311432489
Google Scholar
[14]
Aleksendrić D., Duboka Č. Prediction of automotive friction material characteristics using artificial neural networks-cold performance, Wear Vol. 261, Issues 3-4, 2006, 269-282.
DOI: 10.1016/j.wear.2005.10.006
Google Scholar
[15]
Aleksendrić D. Neural network prediction of brake friction materials wear, Wear 268 (1-2), (2010).
DOI: 10.1016/j.wear.2009.07.006
Google Scholar
[16]
N. Rai, R. Pitchumani, Rapid cure simulation using artificial neural networks, Compos. Part A-Appl. S., 28A (1997), 847–859.
DOI: 10.1016/s1359-835x(97)00046-8
Google Scholar
[17]
N. Rai, R. Pitchumani, Optimal cure cycles for the fabrication of thermosetting matrix composites, Polym. Compos., 18 (1997), 566–581.
DOI: 10.1002/pc.10309
Google Scholar
[18]
P.E. Jahromi, A. Shojaei, S.M.R. Pishvaie, Prediction and optimization of cure cycle of thick fiber-reinforced composite parts using dynamic artificial neural networks, J. Reinf. Plast. Comp., 31 (2012) 1201–1215.
DOI: 10.1177/0731684412451937
Google Scholar
[19]
M. Lawrynczuk, Accuracy and computational efficiency of suboptimal nonlinear predictive control based on neural models, Applied Soft Computing 11, (2011), 2202-2215.
DOI: 10.1016/j.asoc.2010.07.021
Google Scholar
[20]
U. Kesgin, Genetic algorithm and artificial neural network for engine optimization of efficiency and NOx emission, Fuel 83, (2004), 885-895.
DOI: 10.1016/j.fuel.2003.10.025
Google Scholar
[21]
V. Ćirović, D. Aleksendrić, D. Mladenović, Braking torque control using recurrent neural networks, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226, (2012), 754-766.
DOI: 10.1177/0954407011428720
Google Scholar
[22]
D. Aleksendrić, V. Ćirović, Dynamic control of disc brake performance, SAE 2012 Annual Brake Colloquium and Exhibition, SAE Paper 2012-01-1837, San Diego, USA, (2012).
DOI: 10.4271/2012-01-1837
Google Scholar
[23]
D. Aleksendrić, Ž. Jakovljević, V. Ćirović, Intelligent control of braking process, Expert Systems with Applications 39, (2012), 11758-11765.
DOI: 10.1016/j.eswa.2012.04.076
Google Scholar
[24]
J. Kim, T.J. Moon, J.R. Howell, Cure kinetic model, heat of reaction, and glass transition temperature of AS4/3501-6 graphite-epoxy prepregs, J. Compos. Mater., 36 (2002), 2479–2498.
DOI: 10.1177/0021998302036021712
Google Scholar