Modelling of Thermoset Matrix Composite Curing Process

Article Preview

Abstract:

Autoclave curing is a common practice to manufacture high temperature thermoset matrix composites in order to improve the mechanical properties of the final product. The cycle design i.e. the definition and optimization of the temperature-time curve is a key issue for a competitive production. In this paper a very fast and effective procedure, based on the coupling of a finite element thermochemical model of the process and an artificial neural network, is proposed to predict the evolution of temperature in predefined control points inside the processing material. The model has been tested against the imposed thermal cycle used as an input. The procedure is tested simulating the curing process of a three-dimensional double-curved shape. Obtained outcomes highlighted the remarkable capabilities of the implemented procedure in terms of reliability of temperature predictions and of drastic reduction of the computational time with respect to classic computational models.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

1667-1674

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Oliver, M. Cavarero, Comparison between longitudinal tensile characteristics of thin and thick thermoset composite laminates: influence of curing conditions, Comput. Struct., 76 (2000), 125-137.

DOI: 10.1016/s0045-7949(99)00161-3

Google Scholar

[2] E. Ruiz, F. Trochu, Numerical Analysis of cure temperature and internal stresses in thin and thick RTM parts, Compos. Part A: Appl. S., 36 (2005), 806-826.

DOI: 10.1016/j.compositesa.2004.10.021

Google Scholar

[3] W. -B. Young, Compacting pressure and cure cycle for processing of thick composite laminates, Compos. Sci. Technol., 54 (1995), 299-306.

DOI: 10.1016/0266-3538(95)00067-4

Google Scholar

[4] S. Yi, H.H. Hilton, M.F.A. Ahmad, A finite element approach for cure simulation of thermosetting matrix composites, Comput. Struct., 64 (1996), 383-388.

DOI: 10.1016/s0045-7949(96)00156-3

Google Scholar

[5] V.A.F. Costa, A.C.M. Sousa, Modeling of flow and thermo-kinetics during the cure of thick laminated composites, Int. J. Therm. Sci., 42 (2003), 15-22.

DOI: 10.1016/s1290-0729(02)00003-0

Google Scholar

[6] P. Carlone, G.S. Palazzo, Thermo-chemical and rheological finite element analysis of the cure process of thick carbon-epoxy composite laminates, Int. J. Mater. Form., 2 (2009), 137-140.

DOI: 10.1007/s12289-009-0450-8

Google Scholar

[7] P. Carlone, G.S. Palazzo, A multi-scale non-deterministic approach to composite curing process simulation, Adv. Mater. Res., 750-752 (2013), 11-15.

DOI: 10.4028/www.scientific.net/amr.750-752.11

Google Scholar

[8] A. Mawardi, R. Pitchumani, Optimal cure and current cycles for curing of composites using embedded resistive heating elements, J. Manuf. Sci. E-T ASME, 122 (2000), 124-131.

DOI: 10.1115/1.1527903

Google Scholar

[9] P. Dufour, D.J. Michaud, Y. Tourè, P.S. Dhurjati, A partial differential equation model predictive control strategy: application to autoclave composite processing, Comput. Chem. Eng., 28 (2004), 545-556.

DOI: 10.1016/j.compchemeng.2003.08.007

Google Scholar

[10] E. Ruiz, F. Trochu, Multi-criteria thermal optimization in liquid composite molding to reduce processing stresses and cycle time, Compos. Part A: Appl. S., 37 (2006), 913-924.

DOI: 10.1016/j.compositesa.2005.06.010

Google Scholar

[11] P. Carlone, G.S. Palazzo, Composite laminates cure cycle optimisation by meta-heuristic algorithms, Int. J. Mater. Prod. Tec., 46 (2013), 106–123.

DOI: 10.1504/ijmpt.2013.056297

Google Scholar

[12] I. Baran, C.C. Tutum, J.H. Hattel, Optimization of the thermosetting pultrusion process by using hybrid and mixed integer genetic algorithms, Appl. Compos. Mater., 20 (2013), 449-463.

DOI: 10.1007/s10443-012-9278-3

Google Scholar

[13] Aleksendrić D., Senatore A. Optimization of manufacturing process effects on brake friction material wear, Journal of Composite Material, 46 (22), 2012, 2777-2791.

DOI: 10.1177/0021998311432489

Google Scholar

[14] Aleksendrić D., Duboka Č. Prediction of automotive friction material characteristics using artificial neural networks-cold performance, Wear Vol. 261, Issues 3-4, 2006, 269-282.

DOI: 10.1016/j.wear.2005.10.006

Google Scholar

[15] Aleksendrić D. Neural network prediction of brake friction materials wear, Wear 268 (1-2), (2010).

DOI: 10.1016/j.wear.2009.07.006

Google Scholar

[16] N. Rai, R. Pitchumani, Rapid cure simulation using artificial neural networks, Compos. Part A-Appl. S., 28A (1997), 847–859.

DOI: 10.1016/s1359-835x(97)00046-8

Google Scholar

[17] N. Rai, R. Pitchumani, Optimal cure cycles for the fabrication of thermosetting matrix composites, Polym. Compos., 18 (1997), 566–581.

DOI: 10.1002/pc.10309

Google Scholar

[18] P.E. Jahromi, A. Shojaei, S.M.R. Pishvaie, Prediction and optimization of cure cycle of thick fiber-reinforced composite parts using dynamic artificial neural networks, J. Reinf. Plast. Comp., 31 (2012) 1201–1215.

DOI: 10.1177/0731684412451937

Google Scholar

[19] M. Lawrynczuk, Accuracy and computational efficiency of suboptimal nonlinear predictive control based on neural models, Applied Soft Computing 11, (2011), 2202-2215.

DOI: 10.1016/j.asoc.2010.07.021

Google Scholar

[20] U. Kesgin, Genetic algorithm and artificial neural network for engine optimization of efficiency and NOx emission, Fuel 83, (2004), 885-895.

DOI: 10.1016/j.fuel.2003.10.025

Google Scholar

[21] V. Ćirović, D. Aleksendrić, D. Mladenović, Braking torque control using recurrent neural networks, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226, (2012), 754-766.

DOI: 10.1177/0954407011428720

Google Scholar

[22] D. Aleksendrić, V. Ćirović, Dynamic control of disc brake performance, SAE 2012 Annual Brake Colloquium and Exhibition, SAE Paper 2012-01-1837, San Diego, USA, (2012).

DOI: 10.4271/2012-01-1837

Google Scholar

[23] D. Aleksendrić, Ž. Jakovljević, V. Ćirović, Intelligent control of braking process, Expert Systems with Applications 39, (2012), 11758-11765.

DOI: 10.1016/j.eswa.2012.04.076

Google Scholar

[24] J. Kim, T.J. Moon, J.R. Howell, Cure kinetic model, heat of reaction, and glass transition temperature of AS4/3501-6 graphite-epoxy prepregs, J. Compos. Mater., 36 (2002), 2479–2498.

DOI: 10.1177/0021998302036021712

Google Scholar