Revision of the SI: The Determination of the Avogadro Constant as the Base for the Kilogram

Article Preview

Abstract:

At least four units of the International System of Units (SI) are on the way to a new definition. Especially for the unit of mass, the kilogram, a rigorous change is considered. Instead of the current definition, a 1kg-artifact in form of a Pt-Ir-cylinder, the intended formulation relates the unit of mass to a fundamental constant. In detail this requires in a first step a measurement of the chosen fundamental constant with contemporary lowest uncertainty and best reproducibility. The constant will then be fixed to that value. As an example the metre is related to the fixed constant speed of light.For the kg there are considered two ways: one is a watt balance, which determines the mass in units of the Planck constant, h. While at present the watt balances show a heterogeneous appearance, the second class of experiment the determination of the Avogadro constant, NA, which measures the mass in terms of the number of elementary entities has reached a considerable level of uncertainty and reproducibility. The fundament of the new determination of the Avogadro constant is a highly enriched 28Si crystal. The different working groups of the Avogadro team determine molar mass and lattice parameter of the crystal, and mass and volume of two precision spheres made from different positions, but of the same crystal. All measurements are carried out for both spheres and all measurement quantities are determined at least from two independent working groups, usually of different countries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] http: /www. bipm. org/utils/common/pdf/SI_brochure_8_en. pdf.

Google Scholar

[2] I. A. Robinson, Towards the redefinition of the kilogram: a measurement of the Planck constant using the NPL Mark II watt balance, Metrologia 49 (2012), 113-156.

DOI: 10.1088/0026-1394/49/1/016

Google Scholar

[3] R. L. Steiner, E. R. Williams, R. Liu and D. B. Newell, Uncertainty improvements of the NIST electronic kilogram, IEEE Trans. Instrum. Meas. 56 (2007), 592–596.

DOI: 10.1109/tim.2007.890590

Google Scholar

[4] B. Andreas, Y. Azuma, G. Bartl, P. Becker, H. Bettin, M. Borys, I. Busch, M. Gray, P. Fuchs, K. Fujii, H. Fujimoto, E. Kessler, M. Krumrey, U. Kuetgens, N. Kuramoto, G. Mana, P. Manson, E. Massa, S. Mizushima, A. Nicolaus, A. Picard, A. Pramann, O. Rienitz, D. Schiel, St. Valkiers, A. Waseda, An accurate determination of the Avogadro constant by counting the atoms in a 28Si crystal, Phys. Rev. Lett. 106 (2011).

DOI: 10.1103/physrevlett.106.030801

Google Scholar

[5] P. J. Mohr, B. N. Taylor, D. B. Newell, CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys. 80 (2008), 634–730.

DOI: 10.1103/revmodphys.80.633

Google Scholar

[6] A. Pramann, O. Rienitz, D. Schiel, and B. Güttler, Novel concept for the mass spectrometric determination of absolute isotopic abundances with improved measurement uncertainty: II. Development of an experimental procedure for the determination of the molar mass of silicon using MC-ICP-MS" Int. J. Mass Spectrom. 299 (2011).

DOI: 10.1016/j.ijms.2010.09.023

Google Scholar

[7] A. Pramann, O. Rienitz, D. Schiel, J. Schlote, B. Güttler, St. Valkiers, Molar mass of silicon highly enriched in 28Si determined by IDMS", Metrologia 48 (2011), S20–S25.

DOI: 10.1088/0026-1394/48/2/s03

Google Scholar

[8] E. Massa, G. Mana, U. Kuetgens, L., Ferroglio, Measurement of the {220} lattice-plane spacing of a 28Si x-ray interferometer", Metrologia 48 (2011), S37–S43.

DOI: 10.1088/0026-1394/48/2/s06

Google Scholar

[9] A. Picard, P. Barat, M. Borys, M. Firlus, S. Mizushima, State-of-the-art mass determination of 28Si spheres for the Avogadro project", Metrologia 48 (2011), S112-S119.

DOI: 10.1088/0026-1394/48/2/s14

Google Scholar

[10] A. Picard, H. Fang, Mass comparisons using air buoyancy artefacts, Metrologia 41 (2004), 330–332.

DOI: 10.1088/0026-1394/41/4/015

Google Scholar

[11] A. Picard, H. Fang, Methods to determine water vapour sorption on mass standards, Metrologia 41 (2004), 333–339.

DOI: 10.1088/0026-1394/41/4/016

Google Scholar

[12] R. A. Nicolaus, G. Bönsch, Absolute volume determination of a silicon sphere with the spherical interferometer of PTB, Metrologia 42 (2005), 24-31.

DOI: 10.1088/0026-1394/42/1/003

Google Scholar

[13] G. Bartl, H. Bettin, M. Krystek, T. Mai, A. Nicolaus, A. Peter, Volume determination of the Avogadro spheres of highly enriched 28Si with a spherical Fizeau interferometer, Metrologia 48 (2011), S96–S103.

DOI: 10.1088/0026-1394/48/2/s12

Google Scholar

[14] I. Busch, Y. Azuma, H. Bettin, L. Cibik, P. Fuchs, K. Fujii, M. Krumrey, U. Kuetgens, N. Kuramoto, S. Mizushima, Surface layer determination for the Si spheres of the Avogadro project, Metrologia 48 (2011), S62–S82.

DOI: 10.1088/0026-1394/48/2/s10

Google Scholar