Improving the Accuracy of a Multi-Arm-Robot-System by Parameter Identification of the Single Arms

Article Preview

Abstract:

Based on a novel handling concept, the reconfigurable modular multi-arm robot system PARAGRIP is able to handle objects with six DOF by including them into a parallel kinematic structure. The properties of this repeatedly new created parallel structure can be adjusted by appropriate choice of the grasping-and base points to gain optimal performances for a given task. As kinematic parameters determine the transmission behavior and properties of the structure, deviations in the kinematic control model induce positioning errors of the object. In this work, the reduction of these positioning errors is investigated by parameter identification of the implemented kinematic parameters for a single robotic arm. After deriving the kinematic relations of the system, the pose is measured using an external referencing system. Meaningful kinematic parameters are identified and it is shown that the accuracy of each arm can be increased significantly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

428-439

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mannheim, T., Riedel, M., Hüsing, M. and Corves, B.: A new way of grasping: Paragrip - the fusion of gripper and robot, Grasping in Robotics, Springer, section 17, (2013).

DOI: 10.1007/978-1-4471-4664-3_17

Google Scholar

[2] Müller, R., Riedel, M., Vette, M., Corves, B., Esser, M., Hüsing, M.: Reconfigurable Self-Optimising Handling System, Springer, vol. 315, p.255–262, (2010).

DOI: 10.1007/978-3-642-11598-1_30

Google Scholar

[3] Riedel, M., Nefzi, M., Huesing, M., Corves, B.: An adjustable gripper as a reconfigurable robot with a parallel structure,. Proceedings of the Second International Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, p.253–260, (2008).

Google Scholar

[4] Corves, B., Mannheim, T. and Riedel, M.: Re-grasping: Improving Capability for Multi-Arm-Robot-System by Dynamic Reconfiguration, Proceedings of ICIRA, Lecture Notes in Computer Science, vol. 7101, pp.132-141, (2011).

DOI: 10.1007/978-3-642-25486-4_14

Google Scholar

[5] Mooring, B. W., Roth, Z. S., Driels, M.: Fundamentals of Manipulator Calibration, John Wiley & Sons, (1991).

Google Scholar

[6] Roth, Z., Mooring, B., Ravani, B.: An overview of robot calibration, IEEE Journal of Robotics and Automation, Vol. 3, No. 5, pp.377-385, (1987).

DOI: 10.1109/jra.1987.1087124

Google Scholar

[7] Hollerbach, J. M.: A survey of kinematic calibration, The Robotics Review, Vol. 1, pp.207-242, (1989).

Google Scholar

[8] Masory, O., Wang, J., Zhuang, H.: On the accuracy of a Stewart platform. II. Kinematic calibration and compensation, Proceedings of the IEEE International Conference on Robotics and Automation, pp.725-731, (1993).

DOI: 10.1109/robot.1993.292064

Google Scholar

[9] Zhuang, H., Yan, J., Masory, O.: Calibration of stewart platforms and other parallel manipulators by minimizing inverse kinematic residuals, Journal of Robotic Systems, Vol. 15, pp.395-405, (1998).

DOI: 10.1002/(sici)1097-4563(199807)15:7<395::aid-rob2>3.0.co;2-h

Google Scholar

[10] Vischer, P., Clavel, R.: Kinematic calibration of the parallel Delta robot, Robotica, Vol. 16, pp.207-218, (1998).

DOI: 10.1017/s0263574798000538

Google Scholar

[11] Zhuang, H., Masory, O., Yan, J.: Kinematic calibration of a Stewart platform using pose measurements obtained by a single theodolite, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 2, pp.329-334, (1995).

DOI: 10.1109/iros.1995.526237

Google Scholar

[12] Nefzi, M, Corves, B., Hüsing, M. and Renders, S.: Identifikation der kinematischen Parameter eines Parallelroboters mit dem Freiheitsgrad fünf, Proceedings of Robotik, (2008).

Google Scholar

[13] Daney, D., Papegay, Y., Madeline, B.: Choosing Measurement Poses for Robot Calibration with the Local Convergence Method and Tabu Search, The International Journal of Robotics Research, Vol. 24, No. 6, pp.501-518, (2005).

DOI: 10.1177/0278364905053185

Google Scholar

[14] Borm, J., Meng, C.: Determination of Optimal Measurement Configurations for Robot Calibration Based on Observability Measure, The International Journal of Robotics Research, Vol. 10, No. 1, pp.51-63, (1991).

DOI: 10.1177/027836499101000106

Google Scholar

[15] Driels, M. R., Pathre, U. S.: Significance of observation strategy on the design of robot calibration experiments, Journal of Robotic Systems, Vol. 7, pp.197-223, (1990).

DOI: 10.1002/rob.4620070206

Google Scholar

[16] Nahvi, A., Hollerbach, J. M.: The noise amplification index for optimal pose selection in robot calibration, Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 1, pp.647-654, (1996).

DOI: 10.1109/robot.1996.503848

Google Scholar

[17] Sun, Y., Hollerbach, J. M.: Observability index selection for robot calibration, Proceedings of the IEEE International Conference on Robotics and Automation, pp.831-836, (2008).

DOI: 10.1109/robot.2008.4543308

Google Scholar