SEM Characterisation of a Tricalcium Phosphate – Chitosan - PMMA Cement

Article Preview

Abstract:

Synthetic Polymers, both organic and inorganic, are used in a wide variety of biomedical applications. The polymers can be biodegradable or nondegradable. Chitosan (CH), which is a naturally biodegradable, non-toxic biopolymer obtained by the deacetylation of chitin, has been demonstrated to have an intrinsic activity against a wide spectrum of bacteria, filamentous fungi and yeast. Several investigators have studied reinforced tricalcium phosphate (TCP), Chitosan, polymethylmethacrylate (PMMA)/methyl methacrylate (MMA) as potential cement. In fact addition of TCP with chitosan to the cement can improve biocompatibility and also enhance the mechanical properties of the cement because of its both biocompatibility and osteoconductivity properties. Crystalline phase and microstructure of the cement with hydroxyapatite - poly (methyl-methacrylate) were characterized by scanning electron microscopy (SEM; FEI Company), with the purpose to draw solid conclusions about the influence of the particles size, form and uniform mixing on the chemical process. We acquired PMMA sorted according to granulometric size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-51

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.B. Thompson, J.H. Kindt, B. Drake, H.G. Hansma, D.E. Morse, and P.K. Hansma, Bone indentation recovery time correlates with bond reforming time, Nature, 414 (2001) 773.

DOI: 10.1038/414773a

Google Scholar

[2] F.H. Albee, H.F. Morrison, Studies in bone growth, triple calcium phosphate as a stimulus to osteogenesis. Ann. Surg. 71 (1920) 32.

DOI: 10.1097/00000658-192001000-00006

Google Scholar

[3] M. Jarcho, Calcium phosphate ceramics as hard tissue prosthetics, Clin. Orthop., (1981) 259.

Google Scholar

[4] R.G.T. Geesink, K. De Groot, Bonding of bone to apatite coated implants, J. Bone Joint Surg. Br., 70 (1988)17.

DOI: 10.1302/0301-620x.70b1.2828374

Google Scholar

[5] H. Salmah, A.N. Azieyanti, Properties of recycled polyethylene/ chitosan composites: the effect of polyethylene-graft-maleic anhydride, Journal of Reinforced Plastics and Composites 30 (2011) 195-202.

DOI: 10.1177/0731684410391507

Google Scholar

[6] A. Di Martino, M. Sittinger, M.V. Risbud, Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 26 (2005) 5983-90.

DOI: 10.1016/j.biomaterials.2005.03.016

Google Scholar

[7] M. Clochard, E. Dinand, S. Rankin, S. Simic, S. Brocchini, New strategies for polymer development in pharmaceutical science, J Pharm Pharmacol, 53(9) (2001) 1175-1184.

DOI: 10.1211/0022357011776612

Google Scholar

[8] R. Muzzarelli, G. Biagini, A. Pugnaloni, O. Fillippini, V. Baldassarre, C. Castaldini, C. Rizzoli, Reconstruction of parodontal tissue with chitosan Biomaterials, 10 (1989) 598.

DOI: 10.1016/0142-9612(89)90113-0

Google Scholar

[9] H. Matsuyama, M. Teramoto, R. Nakatani and T. Maki, Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II. Membrane morphology, J Appl Polym Sci, 74 (1999) 171-178.

DOI: 10.1002/(sici)1097-4628(19991003)74:1<171::aid-app21>3.0.co;2-r

Google Scholar

[10] L.C. Lin, S.J. Chang, S.M. Kuo, S.F. Chen, C.H. Kuo, Evaluation of chitosan/beta-tricalcium phosphate microspheres as a constituent to PMMA cement., J Mater Sci Mater Med., 16 (2005) 567-74.

DOI: 10.1007/s10856-005-0533-0

Google Scholar

[11] C.O. Renó, B.F.A. S Lima, E. Sousa, C. A Bertran, M. Motisuke, Scaffolds of calcium phosphate cement containing chitosan and gelatin, Materials Research, 16 (2013) 1362-1365.

DOI: 10.1590/s1516-14392013005000124

Google Scholar

[12] M. Sous, R. Bareille, F. Rouais, D. Clément, J. Amédée, B. Dupuy and C. Baquey. Cellular biocompatibility and resistance to compression of macroporous β-tricalcium phosphate ceramics. Biomaterials, 19 (1998) 2147-2153.

DOI: 10.1016/s0142-9612(98)00118-5

Google Scholar

[13] A. Nirmala Grace and K. Pandian, Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study, Colloids and Surfaces A: Physicochem. Eng. Aspects., 297 (2007) 63–70.

DOI: 10.1016/j.colsurfa.2006.10.024

Google Scholar

[14] T.Y. Chiang, C.C. Ho, D.C.H. Chen, M.H. Lai and S.J. Ding, Physicochemical properties and biocompatibility of chitosan oligosaccharide/gelatin/calcium phosphate hybrid cements. Materials Chemistry and Physics, 120 (2010) 282-288.

DOI: 10.1016/j.matchemphys.2009.11.007

Google Scholar

[15] C.N. Cornell, D. Tyndall, S. Waller, J.M. Lane, B.D. Brause, Treatment of experimental osteomyelitis with antibiotic-impregnated bone graft, substitute, J Orthop Res, 11 (1993) 619–26.

DOI: 10.1002/jor.1100110502

Google Scholar

[16] W. Jakubowski, A. lósarczyk, Z. Paszkiewicz, W. Szymaski, B. Walkowiak, Bacterial colonisation of bioceramic surfaces,. Adv Appl Ceram, 107 (2008) 217.

DOI: 10.1179/174367608x263395

Google Scholar

[17] L. Wei, L.W. Zhaoyang, L.F. Xin-De, Chemical modification of biopolymers-mechanism of model graft copolymerization of chitosan, J. Biomater. Sci. Polym. Ed., 4 (1993) 557-566.

DOI: 10.1163/156856293x00780

Google Scholar

[18] C.S. Cutter, B.J. Mehrara, Bone grafts and substitutes, J Long Term Eff Med Implants, 16 (2006) 249–60.

DOI: 10.1615/jlongtermeffmedimplants.v16.i3.50

Google Scholar

[19] D. Tadic, M. Epple, A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone, Biomaterials, 25 (2004) 987.

DOI: 10.1016/s0142-9612(03)00621-5

Google Scholar

[20] M. Bohner, G.H. Van Lenthe, S. Grünenfelder, W. Hirsiger, R. Evison, R. Müller, Synthesis and characterization of porous beta-tricalcium phosphate blocks, Biomaterials, 26 (2005) 6099.

DOI: 10.1016/j.biomaterials.2005.03.026

Google Scholar

[21] M. Bashoor-Zadeh, G. Baroud, M. Bohner, Geometric analysis of porous bone substitutes using micro-computed tomography and fuzzy distance transform, Acta Biomaterials, 6 (2010) 864–75.

DOI: 10.1016/j.actbio.2009.08.007

Google Scholar

[22] K.S. Chen and R.F. Hsu Evaluation of environmental effects on mechanical properties and characterization of creep behavior of PMMA, Journal of the Chinese Institute of Engineers, 30 (2007) 267-274.

DOI: 10.1080/02533839.2007.9671253

Google Scholar

[23] K.S. Bong, K.Y. Jick, Y. T. Su A. P. Limnd, The Characteristics of a Hydroxyapatite-Chitosan-PMMA Bone Cement, " Biomaterials, 25 (2004) 5715-5723.

Google Scholar

[24] R.K. Roeder, M.M. Sproul and C.H. Turner, Hydroxyapatite Whiskers Provide Improved Mechanical Properties in Reinforced Polymer Composites, Journal of Biomedical Materials Research Part A, 67A (2003) 801-812.

DOI: 10.1002/jbm.a.10140

Google Scholar

[25] P.N. Manson, W.A. Crawley, J.E. Hoopes, Frontal cranioplasty: risk factors and choice of cranial vault reconstruction material. Plast Reconstr Surg. 77 (1986) 888.

DOI: 10.1097/00006534-198606000-00003

Google Scholar