Comparison between the Microstructure of the Mineral Phase in Two Types of Composite Beads for Bone Regeneration

Article Preview

Abstract:

Apatite containing-polymer beads have been prepared using two methods. The first series of scaffolds is obtained using an effortless procedure consisting in mixing the mineral phase in the polymer precursors, followed by crosslinking. The resulting materials contained agglomerates of inorganic particles. The second series of materials is generated through a more complex synthesis involving the alternate Ca2+/PO43- soaking of the polymer beads. This leads to formation of nanometric apatite phase homogeneously distributed within and on the surface of the polymer substrates. The resulting materials have been characterized by infrared spectrometry, X-ray diffraction and scanning electron microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-30

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Bubenikova, I.C. Stancu, L. Kalinovska, E. Schacht, E. Lippens, H. Declercq, M. Cornelissen, M. Santin, M. Amblard, J. Martinez, Chemoselective cross-linking of alginate with thiol-terminated peptides for tissue engineering applications, Carbohyd. Polym. 88 (2012).

DOI: 10.1016/j.carbpol.2012.01.089

Google Scholar

[2] D.M. Dragusin,   S. Van Vlierberghe,  P. Dubruel,   M. Dierick,   L. Van Hoorebeke,  H.A. Declercq,   M.M. Cornelissen,  I.C. Stancu, Novel gelatin-PHEMA porous scaffolds for tissue engineering applications, Soft Matter. 8 (2012) 9589-9602.

DOI: 10.1039/c2sm25536g

Google Scholar

[3] I.C. Stancu, Gelatin hydrogels with PAMAM nanostructured surface and high density surface-localized amino groups, React Funct Polym. 70 (2010) 314-324.

DOI: 10.1016/j.reactfunctpolym.2010.02.005

Google Scholar

[4] I.C. Stancu, A. Lungu, D.M. Dragusin, E. Vasile, C. Petrea, H. Iovu, Porous gelatin-alginate-polyacrylamide scaffolds with interpenetrating network structure: synthesis and characterization, Soft Matter. 11 (2013) 384-393.

DOI: 10.1080/1539445x.2011.642091

Google Scholar

[5] T. Taguchi, Y. Muraoka, H. Matsuyama, A. Kishida, M. Akashi, Apatite coating on hydrophilic polymer-grafted poly(ethylene) films using an alternate soaking process, Biomaterials. 22 (2000) 53-58.

DOI: 10.1016/s0142-9612(00)00162-9

Google Scholar

[6] Y.W. Gu, B.Y. Tay, C.S. Lim, M.S. Yong, Biomimetic deposition of apatite coating on surface-modified NiTi alloy, Biomaterials. 26 (2005) 6916-6923.

DOI: 10.1016/j.biomaterials.2005.04.051

Google Scholar

[7] E. Vasile, A. Serafim, D.M. Dragusin, C. Petrea, H. Iovu, I.C. Stancu, Apatite formation on active nanostructured coating based on functionalized gold nanoparticles, J Nanopart Res. 14 (2012) 1-14.

DOI: 10.1007/s11051-012-0918-1

Google Scholar

[8] E. Landi, A. Tampieri, G. Celotti, R. Langenati, M. Sandri, S. Sprio, Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development, Biomaterials. 26 (2005) 2835-2845.

DOI: 10.1016/j.biomaterials.2004.08.010

Google Scholar

[9] C. You, T. Miyazaki, E. Ishida, M. Ashizuka, C. Ohtsuki, M. Tanihara, Fabrication of poly(vinyl alcohol)–apatite hybrids through biomimetic process, J Eur Ceram Soc. 27 (2007) 1585-1588.

DOI: 10.1016/j.jeurceramsoc.2006.04.055

Google Scholar