[1]
L Kelvin. On the thermo-elastic and thermal-magnetic properties of matter. Transactions of the Royal Society of Edinburgh, 20(1): 161, 1853.
Google Scholar
[2]
A Chrysochoos, H Pham, and O Maisonneuve. Energy balance of thermoelastic martensite transformation under stress. Nuclear engineering and design, 162(1): 1-12, (1996).
DOI: 10.1016/0029-5493(95)01140-4
Google Scholar
[3]
A Chrysochoos and H Louche. An infrared image processing to analyse the calorific effects accompanying strain localisation. International Journal of Engineering Science, 38(16): 1759-1788, (2000).
DOI: 10.1016/s0020-7225(00)00002-1
Google Scholar
[4]
N Renault, S André, D Maillet, and C Cunat. A spectral method for the estimation of a thermomechanical heat source from infrared temperature measurements. International Journal of Thermal Sciences, 49(8): 1394-1406, (2010).
DOI: 10.1016/j.ijthermalsci.2010.03.001
Google Scholar
[5]
XG Wang, V Crupi, XL Guo, and YG Zhao. Quantitative thermographic methodology for fatigue assessment and stress measurement. International Journal of Fatigue, 32(12): 1970-1976, (2010).
DOI: 10.1016/j.ijfatigue.2010.07.004
Google Scholar
[6]
V Crupi, E Guglielmino, M Maestro, and A Marinò. Fatigue analysis of butt welded AH36 steel joints: Thermographic method and design S−N curve. Marine Structures, 22(3): 373-386, (2009).
DOI: 10.1016/j.marstruc.2009.03.001
Google Scholar
[7]
CD Wen. Investigation of steel emissivity behaviors: Examination of multispectral radiation thermometry (mrt) emissivity models. International Journal of Heat and Mass Transfer, 53(9): 2035- -2043, (2010).
DOI: 10.1016/j.ijheatmasstransfer.2009.12.053
Google Scholar
[8]
J A Rodríguez-Martínez, R Pesci, and A Rusinek. Experimental study on the martensitic transformation in aisi 304 steel sheets subjected to tension under wide ranges of strain rate at room temperature. Materials Science and Engineering: A, 528(18): 5974-5982, (2011).
DOI: 10.1016/j.msea.2011.04.030
Google Scholar