[1]
V.W.Y. Tama, C.M. Tam, A review on the viable technology for construction waste recycling, Resources, Conservation and Recycling 47 (2006) 209–221.
DOI: 10.1016/j.resconrec.2005.12.002
Google Scholar
[2]
Jirang Cui, Eric Forssberg, Mechanical recycling of waste electric and electronic equipment: a review, J. Hazard. Mater. 99 (2003) 243–263.
DOI: 10.1016/s0304-3894(03)00061-x
Google Scholar
[3]
G. Chen, H. Lee, K.L. Young, P.L. Yue, A. Wong, T. Tao, K.K. Choi, Glass recycling in cement production—an innovative approach, Waste Management 22 (2002) 747–753.
DOI: 10.1016/s0956-053x(02)00047-8
Google Scholar
[4]
N. Murayama, H. Yamamoto, J. Shibata, Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction, Int. J. Miner. Process 64 (2002) 1–17.
DOI: 10.1016/s0301-7516(01)00046-1
Google Scholar
[5]
T. Murakami, Y. Sugano, T. Kinami, T. Narushima, Y. Iguchi, C. Ouchi, Alkali hydrothermal synthesis of zeolite A using oxide by-products, ISIJ Int. 51 (2011) 158–165.
DOI: 10.2355/isijinternational.51.158
Google Scholar
[6]
D.W. Breck, W.G. Eversole, R.M. Milton, T.B. Reed, T.L. Thomas, Crystalline zeolites. I. the properties of a new synthetic zeolite. Type A, J. Am. Chem. Soc. 78 (1956) 5963–5972.
DOI: 10.1021/ja01604a001
Google Scholar
[7]
Y. Sugano, R. Sahara, T. Murakami, T. Narushima, Y. Iguchi, C. Ouchi, Hydrothermal synthesis of zeolite A using blast furnace slag, ISIJ Int. 45 (2006) 937–945.
DOI: 10.2355/isijinternational.45.937
Google Scholar
[8]
K.S. Hui, C.Y. Chao, Effects of step-change of synthesis temperature on synthesis of zeolite 4A from coal fly ash, Micropor. Mesopor. Mater. 88 (2006) 145–151.
DOI: 10.1016/j.micromeso.2005.09.005
Google Scholar
[9]
A. Nakahira, H. Naganuma, T. Kubo, Y. Yamasaki, Synthesis of monolithic tobermorite from blast furnace slag and evaluation of its Pb removal ability, J. Ceram. Soc. Japan. 116 (2008) 500–504.
DOI: 10.2109/jcersj2.116.500
Google Scholar
[10]
M. Tsujiguchi, T. Kobashi, J. Kanbara, Y. Utsumi, N. Kakimori, A. Nakahira, Synthesis of zeolite from glass, J. Soc. Mater. Sci. Jpn. 62 (2013) 357–361.
DOI: 10.2472/jsms.62.357
Google Scholar
[11]
M. Tsujiguchi, T. Kobashi, Y. Utsumi, N. Kakimori, A. Nakahira, Synthesis of FAU zeolite from aluminoborosilicate glass and elution behavior of glass components, J. Ceram. Soc. Japan 122 (2014) 104–109.
DOI: 10.2109/jcersj2.122.104
Google Scholar
[12]
D. Antonelli, A. Nakahira, J.Y. Ying, Ligand-assisted liquid templating in mesoporous Niobium oxide molecular sieve, Inorg. Chem. 35 (1996) 3126–3136.
DOI: 10.1021/ic951533p
Google Scholar
[13]
B. Subotic, D. Skrtic, I. Smit, L. Sekovanic, Transformation of zeolite A into hydroxysodalite: I. an approach to the mechanism of transformation and its experimental evaluation, J. Cryst. Growth 50 (1980) 498–508.
Google Scholar
[14]
M. Tsujiguchi, T. Kobashi, Y. Utsumi, N. Kakimori, A. Nakahira, Synthesis of zeolite A from aluminoborosilicate glass used in glass substrates of liquid crystal display panels and evaluation of its cation exchange capacity, J. Am. Ceram. Soc. 97 (2014) 114-119.
DOI: 10.1111/jace.12671
Google Scholar
[15]
M. Tsujiguchi, T. Kobashi, M. Oki, Y. Utsumi, N. Kakimori, A. Nakahira, Synthesis and characterization of zeolite A from crushed particles of aluminoborosilicate glassused in LCD panels, J. Asian Ceram. Soc. 97 (2014) 114–119.
DOI: 10.1016/j.jascer.2013.12.005
Google Scholar
[16]
M. Kamitani, T.Tagami, M. Kondo, T. Hiki, T. Wakihara, A. Nakahira, Fabrication and evaluation of hybrid materials from A-zeolite and ground glass powders for vitrified radioactive waste, J. Cerem. Soc. Japan 122 (2014) 151–155.
DOI: 10.2109/jcersj2.122.151
Google Scholar