[1]
A. Krell, P. Blank, Grain size dependence of hardness in dense submicrometer alumina, J. Am. Ceram. Soc. 78 (1995) 1118-1120.
DOI: 10.1111/j.1151-2916.1995.tb08452.x
Google Scholar
[2]
R. Riedel, H.J. Kleebe, H. Schonfelder, F. Aldinger, A covalent micro/nano-composite resistant to high-temperature oxidation, Nature 374 (1995) 526-528.
DOI: 10.1038/374526a0
Google Scholar
[3]
R. Apetz, M.P.B van Bruggen, Transparent alumina: A light-scattering model, J. Am. Ceram. Soc. 86 (2003) 480-486.
DOI: 10.1111/j.1151-2916.2003.tb03325.x
Google Scholar
[4]
J.F. Roy, M. Descemond, C. Brodhag, F. Thevenot, Alumina microstructural behavior under pressureless sintering and hot-pressing, J. Eur. Ceram. Soc. 11 (1993) 325-333.
DOI: 10.1016/0955-2219(93)90032-m
Google Scholar
[5]
S.H. Risbud, C.H. Shan, A.K. Mukherjee, M.J. Kim, J.S. Bow, R.A. Holl, Retention of nanostructure in aluminum oxide by very rapid sintering at 1150 oC, J. Mater. Res. 10 (1995) 237-239.
DOI: 10.1557/jmr.1995.0237
Google Scholar
[6]
Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci. 41 (2006) 763-777.
DOI: 10.1007/s10853-006-6555-2
Google Scholar
[7]
U. Anselmi-Tamburini, J.E. Garay, Z.A. Munir, A. Tacca, F. Maglia, G. Spinolo, Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part 1. Densification studies, J. Mater. Res. 19 (2004) 3255-3262.
DOI: 10.1557/jmr.2004.0423
Google Scholar
[8]
R. Chaim, M. Margulis, Densification maps for spark plasma sintering of nanocrystalline MgO ceramics, Mater. Sci. Eng. A 407 (2005) 180-187.
DOI: 10.1016/j.msea.2005.07.024
Google Scholar
[9]
F. Meng, Z. Fu, J. Zhang, Rapid densification of nano-grained alumina by high temperature and pressure with a very high heating rate, J. Am. Ceram. Soc. 90 (2007) 1262-1264.
DOI: 10.1111/j.1551-2916.2007.01599.x
Google Scholar
[10]
Z. Fu, L. Huang, J. Zhang, Ultra-fast densification of CNTs reinforced alumina based on combustion reaction and quick pressing, Sci. China Tech. Sci. 55 (2012) 484-489.
DOI: 10.1007/s11431-011-4674-8
Google Scholar
[11]
R. Marder, R. Chaim, C. Estournès, Grain growth stagnation in fully dense nanocrystalline Y2O3 by spark plasma sintering, Mater. Sci. Eng. A 527 (2010) 1577-1585.
DOI: 10.1016/j.msea.2009.11.009
Google Scholar
[12]
R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics, Mater. Sci. Eng. A 443 (2007) 25-32.
DOI: 10.1016/j.msea.2008.02.031
Google Scholar
[13]
Z.A. Munir, U. Anselmi-Tamburini, Self-propagating exothermic reaction: The synthesis of high-temperature materials by combustion, Mater. Sci. Rep. 3 (1989) 277-358.
DOI: 10.1016/0920-2307(89)90001-7
Google Scholar
[14]
D. Ehre, Y. Gutmanas, R. Chaim, Densification of nanocrystalline MgO ceramics by hot-pressing, J. Eur. Ceram. Soc. 25 (2005) 3579-3585.
DOI: 10.1016/j.jeurceramsoc.2004.09.023
Google Scholar
[15]
T.K. Gupta, Sintering of MgO: Densification and grain growth, J. Mater. Sci. 6 (1971) 25-32.
Google Scholar