Densification of Nanocrystalline Ceramics by Combustion Reaction and Quick Pressing

Article Preview

Abstract:

The technique of combustion reaction and quick pressing was adopted to prepare dense nanocrystalline ceramics. The densification process of magnesia compact with a particle size of 100 nm was investigated, under the applied pressure of up to 170 MPa, and the temperature of 1740–2080 K with ultra-high heating rate of above 1700 K/min. As a result, pure magnesia ceramics with a relative density of 98.8% and an average grain size of 120 nm was obtained at 1740 K and 170 MPa, while the ones with decreased relative density and increased grain size were produced under the increasing temperature and the identical pressure conditions. The results indicated that grain growth of the nanocrystalline magnesia was effectively restrained by the combined effect of the ultra-high heating rate and the high pressure. Moreover, under the particular sintering conditions, there existed an appropriate temperature range for the preparation of dense nanocrystalline magnesia, and the excessive temperature would not only exaggerate grain growth but also impede densification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-211

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Krell, P. Blank, Grain size dependence of hardness in dense submicrometer alumina, J. Am. Ceram. Soc. 78 (1995) 1118-1120.

DOI: 10.1111/j.1151-2916.1995.tb08452.x

Google Scholar

[2] R. Riedel, H.J. Kleebe, H. Schonfelder, F. Aldinger, A covalent micro/nano-composite resistant to high-temperature oxidation, Nature 374 (1995) 526-528.

DOI: 10.1038/374526a0

Google Scholar

[3] R. Apetz, M.P.B van Bruggen, Transparent alumina: A light-scattering model, J. Am. Ceram. Soc. 86 (2003) 480-486.

DOI: 10.1111/j.1151-2916.2003.tb03325.x

Google Scholar

[4] J.F. Roy, M. Descemond, C. Brodhag, F. Thevenot, Alumina microstructural behavior under pressureless sintering and hot-pressing, J. Eur. Ceram. Soc. 11 (1993) 325-333.

DOI: 10.1016/0955-2219(93)90032-m

Google Scholar

[5] S.H. Risbud, C.H. Shan, A.K. Mukherjee, M.J. Kim, J.S. Bow, R.A. Holl, Retention of nanostructure in aluminum oxide by very rapid sintering at 1150 oC, J. Mater. Res. 10 (1995) 237-239.

DOI: 10.1557/jmr.1995.0237

Google Scholar

[6] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci. 41 (2006) 763-777.

DOI: 10.1007/s10853-006-6555-2

Google Scholar

[7] U. Anselmi-Tamburini, J.E. Garay, Z.A. Munir, A. Tacca, F. Maglia, G. Spinolo, Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part 1. Densification studies, J. Mater. Res. 19 (2004) 3255-3262.

DOI: 10.1557/jmr.2004.0423

Google Scholar

[8] R. Chaim, M. Margulis, Densification maps for spark plasma sintering of nanocrystalline MgO ceramics, Mater. Sci. Eng. A 407 (2005) 180-187.

DOI: 10.1016/j.msea.2005.07.024

Google Scholar

[9] F. Meng, Z. Fu, J. Zhang, Rapid densification of nano-grained alumina by high temperature and pressure with a very high heating rate, J. Am. Ceram. Soc. 90 (2007) 1262-1264.

DOI: 10.1111/j.1551-2916.2007.01599.x

Google Scholar

[10] Z. Fu, L. Huang, J. Zhang, Ultra-fast densification of CNTs reinforced alumina based on combustion reaction and quick pressing, Sci. China Tech. Sci. 55 (2012) 484-489.

DOI: 10.1007/s11431-011-4674-8

Google Scholar

[11] R. Marder, R. Chaim, C. Estournès, Grain growth stagnation in fully dense nanocrystalline Y2O3 by spark plasma sintering, Mater. Sci. Eng. A 527 (2010) 1577-1585.

DOI: 10.1016/j.msea.2009.11.009

Google Scholar

[12] R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics, Mater. Sci. Eng. A 443 (2007) 25-32.

DOI: 10.1016/j.msea.2008.02.031

Google Scholar

[13] Z.A. Munir, U. Anselmi-Tamburini, Self-propagating exothermic reaction: The synthesis of high-temperature materials by combustion, Mater. Sci. Rep. 3 (1989) 277-358.

DOI: 10.1016/0920-2307(89)90001-7

Google Scholar

[14] D. Ehre, Y. Gutmanas, R. Chaim, Densification of nanocrystalline MgO ceramics by hot-pressing, J. Eur. Ceram. Soc. 25 (2005) 3579-3585.

DOI: 10.1016/j.jeurceramsoc.2004.09.023

Google Scholar

[15] T.K. Gupta, Sintering of MgO: Densification and grain growth, J. Mater. Sci. 6 (1971) 25-32.

Google Scholar