Fabrication of Porous Al with Controlled Pore Size by Spark Plasma Sintering

Article Preview

Abstract:

Porous Al with controlled pore size was prepared by the spacer method including spark plasma sintering and the dissolution of space-holding NaCl particles. The NaCl of the controlled pore size (particle diameter control range of 5˰ڌm~20˰ڌm) were prepared by precipitation method. The effects of sintering condition such as the sintering electric current intensity, voltage and the size, morphology and content of NaCl powder on the porosity and size of porous Al are investigated. The porous Al with higher porosity of 69.41% and smaller pore size of 5 ڌm was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

199-203

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.J. Gibson, M.F. Ashby, Cellur Solids: Structure and Properties, Cambridge Univ. Press, Cambridge, 1997.

Google Scholar

[2] M. Hakamada, Y. Yamada, T. Nomura, H. Kusuda, Y. Chen, M. Mabuchi, Effect of sintering temperature on compressive properties of porous aluminum produced by spark plasma sintering, Mater. Trans. 2 (2005) 186-188.

DOI: 10.2320/matertrans.46.186

Google Scholar

[3] M. Hakamada, Y. Yamada, T. Nomura, H. Kusuda, Y. Chen, M. Mabuchi, Fabrication of porous aluminum sintering by spacer method consisting of spark plasma sintering and sodium chloride dissolution, Mater. Trans. 12 (2005) 2624-2628.

DOI: 10.2320/matertrans.46.2624

Google Scholar

[4] J. Banhart, Manufacture, Characterisation and Application of Cellular Metal: Metal Foams, Progress in Materials Science 46 (2001) 559 – 632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[5] T. Miyoshi, M. Itoh, S. Akiyama, A. Kitahara, ALPORAS Aluminum foam: Process, properties and applications, Adv. Eng. Mater. 4 (2000) 179-183.

DOI: 10.1002/(sici)1527-2648(200004)2:4<179::aid-adem179>3.0.co;2-g

Google Scholar

[6] M. Kobashi, N. kanetake, Processing of intermerallic foam by combustion reaction, Adv. Eng. Mater. 4 (2002) 745-747.

DOI: 10.1002/1527-2648(20021014)4:10<745::aid-adem745>3.0.co;2-u

Google Scholar

[7] A.E. Simone, L.J. Gibson, Efficient structural components using porous metals, Mater Sci and Eng A 229 (1997) 55-62.

Google Scholar

[8] C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, T. Asahina, Processing of fine-grain Al foam by SPS, J. Mater. Sci. Lett. 22 (2003) 1407-1409.

DOI: 10.1023/a:1025751128104

Google Scholar

[9] C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, Processing of biocompatible porous Ti and Mg, Scr. Mater. 45 (2001) 1147-1153.

DOI: 10.1016/s1359-6462(01)01132-0

Google Scholar

[10] Y.Y. Zhao, D.X. Sun, A novel sintering-dissolution process for manufacturing Al foams, Scr. Mater. 44 (2001) 105-110.

DOI: 10.1016/s1359-6462(00)00548-0

Google Scholar

[11] C. Gaillard, J. F. Despois, A. Mortensen, Processing of NaCl powders of controlled size and shape for the microstructural tailoring of aluminiun foams, Mater. Sci. Eng. A, 374 (2004) 250-262.

DOI: 10.1016/j.msea.2004.03.015

Google Scholar