Surface Modification of Silicon Carbide Powder with Silica Coating by Rotary Chemical Vapor Deposition

Article Preview

Abstract:

The surface of silicon carbide (SiC) powder was modified by coating with amorphous silica (SiO2) using (C2H5O4)Si (tetraethyl orthosilicate: TEOS) as a precursor by rotary chemical vapor deposition (RCVD). With increasing deposition time from 0.9 to 14.4 ks, the mass content of SiO2 coating increased from 1 to 35 mass%. The SiO2 mass content had a linear relationship with deposition time from 2.7 to 7.2 ks. The effects of O2 gas flow, deposition temperature (Tdep), total pressure (Ptot) and precursor vaporization temperature (Tvap) on the SiO2 yield by RCVD were investigated. At O2 gas flow of 4.2 × 10-7 m3 s-1, Tdep of 948 K, Ptot of 400 Pa and deposition time of 7.2 ks, the maximum SiO2 yield of 1.82 × 10-7 kg/s with SiC powder of 4.5 × 10-3 kg by RCVD was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

232-236

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, (CdSe)ZnS core-shell quantum dots:  synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B 101 (1997) 9463-9475.

DOI: 10.1021/jp971091y

Google Scholar

[2] L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature 420 (2002) 57-61.

DOI: 10.1038/nature01141

Google Scholar

[3] D.P. Liu, G.D. Li, Y. Su, J.S. Chen, Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components, Angew. Chem. Int. Ed. 45 (2006) 7370-7373.

DOI: 10.1002/anie.200602429

Google Scholar

[4] H. Ow, D.R. Larson, M. Srivastava, B.A. Baird, W.W. Webb, U. Wiesner, Bright and stable core-shell fluorescent silica nanoparticles, Nano Lett. 5 (2005) 113-117.

DOI: 10.1021/nl0482478

Google Scholar

[5] J.K. Edwards, B. Solsona, P. Landon, A.F. Carley, A. Herzing, M. Watanabe, C.J. Kielyb, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts, J. Mater. Chem. 15 (2005) 4595-4600.

DOI: 10.1039/b509542e

Google Scholar

[6] D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts, Science 311 (2006) 362-365.

DOI: 10.1126/science.1120560

Google Scholar

[7] J.B. Jackson, S.L. Westcott, L.R. Hirsch, J.L. West, N.J. Halas, Controlling the surface enhanced Raman effect via the nanoshell geometry, Appl. Phys. Lett. 82 (2003) 257-259.

DOI: 10.1063/1.1534916

Google Scholar

[8] J.C. Knight, P.S.J. Russell, New ways to guide light, Science 296 (2002) 276-277.

Google Scholar

[9] W. Shi, H. Zeng, Y. Sahoo, T.Y. Ohulchanskyy, Y. Ding, Z. Lin Wang, M. Swihart, P.N. Prasad, A general approach to binary and ternary hybrid nanocrystals, Nano Lett. 6 (2006) 875-881.

DOI: 10.1021/nl0600833

Google Scholar

[10] J.F. Zhang, R. Tu, T. Goto, Preparation of Ni-precipitated hBN powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering, J. Alloys Compd. 502 (2010) 371-375.

DOI: 10.1016/j.jallcom.2010.04.170

Google Scholar

[11] Z.H. He, R. Tu, H. Katsui, T. Goto, Synthesis of SiC/SiO2 core-shell powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering, Ceram. Int. 39 (2013) 2605-2610.

DOI: 10.1016/j.ceramint.2012.09.025

Google Scholar

[12] H. Katsuia, Z.H. He, T. Goto, Silicon carbide coating on diamond powder by rotary chemical vapor deposition, Key Eng. Mater. 508 (2012) 65-68.

DOI: 10.4028/www.scientific.net/kem.508.65

Google Scholar

[13] A. Boulle, Z. Oudjedi, R. Guinebretiere, B. Soulestin, A. Dauger, Ceramic nanocomposites obtained by sol-gel coating of submicron powders, Acta. Mater. 49 (2001) 811-816.

DOI: 10.1016/s1359-6454(00)00366-9

Google Scholar

[14] C. Vahlas, B. Caussat, P. Serp, G.N. Angelopoulos, Principles and applications of CVD powder technology, Mater. Sci. Eng. R 53 (2006) 1-72.

DOI: 10.1016/j.mser.2006.05.001

Google Scholar

[15] F. Guillard, A. Allemand, J.D. Lulewicz, J. Galy, Densification of SiC by SPS-effects of time, temperature and pressure, J. Eur. Ceram. Soc. 27 (2007) 2725-2728.

DOI: 10.1016/j.jeurceramsoc.2006.10.005

Google Scholar

[16] S. Baud, F. Thevenot, Microstructures and mechanical properties of liquid-phase sintered seeded silicon carbide, Mater. Chem. Phys. 67 (2001) 165-174.

DOI: 10.1016/s0254-0584(00)00435-1

Google Scholar

[17] J. F. Zhang, R. Tu, T. Goto, Densification of SiO2-cBN composites by using Ni nanoparticle and SiO2 nanolayer coated cBN powder, Ceram. Int. 38 (2012) 4961-4966.

DOI: 10.1016/j.ceramint.2012.02.090

Google Scholar

[18] Z.H. He, H. Katsuia, R. Tu, J. F. Zhang, T. Goto, High hardness and ductile mosaic SiC/SiO2 composite by spark plasma sintering, J. Am. Ceram. Soc. 97 (2014) 681-683.

DOI: 10.1111/jace.12813

Google Scholar