[1]
B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B 101 (1997) 9463-9475.
DOI: 10.1021/jp971091y
Google Scholar
[2]
L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature 420 (2002) 57-61.
DOI: 10.1038/nature01141
Google Scholar
[3]
D.P. Liu, G.D. Li, Y. Su, J.S. Chen, Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components, Angew. Chem. Int. Ed. 45 (2006) 7370-7373.
DOI: 10.1002/anie.200602429
Google Scholar
[4]
H. Ow, D.R. Larson, M. Srivastava, B.A. Baird, W.W. Webb, U. Wiesner, Bright and stable core-shell fluorescent silica nanoparticles, Nano Lett. 5 (2005) 113-117.
DOI: 10.1021/nl0482478
Google Scholar
[5]
J.K. Edwards, B. Solsona, P. Landon, A.F. Carley, A. Herzing, M. Watanabe, C.J. Kielyb, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts, J. Mater. Chem. 15 (2005) 4595-4600.
DOI: 10.1039/b509542e
Google Scholar
[6]
D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts, Science 311 (2006) 362-365.
DOI: 10.1126/science.1120560
Google Scholar
[7]
J.B. Jackson, S.L. Westcott, L.R. Hirsch, J.L. West, N.J. Halas, Controlling the surface enhanced Raman effect via the nanoshell geometry, Appl. Phys. Lett. 82 (2003) 257-259.
DOI: 10.1063/1.1534916
Google Scholar
[8]
J.C. Knight, P.S.J. Russell, New ways to guide light, Science 296 (2002) 276-277.
Google Scholar
[9]
W. Shi, H. Zeng, Y. Sahoo, T.Y. Ohulchanskyy, Y. Ding, Z. Lin Wang, M. Swihart, P.N. Prasad, A general approach to binary and ternary hybrid nanocrystals, Nano Lett. 6 (2006) 875-881.
DOI: 10.1021/nl0600833
Google Scholar
[10]
J.F. Zhang, R. Tu, T. Goto, Preparation of Ni-precipitated hBN powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering, J. Alloys Compd. 502 (2010) 371-375.
DOI: 10.1016/j.jallcom.2010.04.170
Google Scholar
[11]
Z.H. He, R. Tu, H. Katsui, T. Goto, Synthesis of SiC/SiO2 core-shell powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering, Ceram. Int. 39 (2013) 2605-2610.
DOI: 10.1016/j.ceramint.2012.09.025
Google Scholar
[12]
H. Katsuia, Z.H. He, T. Goto, Silicon carbide coating on diamond powder by rotary chemical vapor deposition, Key Eng. Mater. 508 (2012) 65-68.
DOI: 10.4028/www.scientific.net/kem.508.65
Google Scholar
[13]
A. Boulle, Z. Oudjedi, R. Guinebretiere, B. Soulestin, A. Dauger, Ceramic nanocomposites obtained by sol-gel coating of submicron powders, Acta. Mater. 49 (2001) 811-816.
DOI: 10.1016/s1359-6454(00)00366-9
Google Scholar
[14]
C. Vahlas, B. Caussat, P. Serp, G.N. Angelopoulos, Principles and applications of CVD powder technology, Mater. Sci. Eng. R 53 (2006) 1-72.
DOI: 10.1016/j.mser.2006.05.001
Google Scholar
[15]
F. Guillard, A. Allemand, J.D. Lulewicz, J. Galy, Densification of SiC by SPS-effects of time, temperature and pressure, J. Eur. Ceram. Soc. 27 (2007) 2725-2728.
DOI: 10.1016/j.jeurceramsoc.2006.10.005
Google Scholar
[16]
S. Baud, F. Thevenot, Microstructures and mechanical properties of liquid-phase sintered seeded silicon carbide, Mater. Chem. Phys. 67 (2001) 165-174.
DOI: 10.1016/s0254-0584(00)00435-1
Google Scholar
[17]
J. F. Zhang, R. Tu, T. Goto, Densification of SiO2-cBN composites by using Ni nanoparticle and SiO2 nanolayer coated cBN powder, Ceram. Int. 38 (2012) 4961-4966.
DOI: 10.1016/j.ceramint.2012.02.090
Google Scholar
[18]
Z.H. He, H. Katsuia, R. Tu, J. F. Zhang, T. Goto, High hardness and ductile mosaic SiC/SiO2 composite by spark plasma sintering, J. Am. Ceram. Soc. 97 (2014) 681-683.
DOI: 10.1111/jace.12813
Google Scholar