Effect of Process Parameters on Laser Beam Formed Titanium Alloy Sheet

Article Preview

Abstract:

Titanium alloy (Ti6Al4V) is the most widely used alloy grade of titanium in the aerospace industry because of its excellent properties. Laser beam forming is a highly flexible rapid prototyping and low-volume manufacturing process that employs laser-induced thermal distortion to shape sheet metal parts without hard tooling or external forces. The resulting formed shape and the curvature are determined by the beam power and size, scanning velocity, number of scan irradiations and the effect of cooling, all these form part of the process parameters that have to be optimised in order to achieve the desired shape and properties in formed components. Hence, a good control of the process parameters is inevitable to achieve these desired properties. Controlling a single process parameter in a process may be considered easy to manage than a system of multiple parameter process such as a laser beam forming process. This study investigates the effect of the scan velocity, laser power and cooling effect on the developed curvature with the aim of achieving good structural integrity.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 622-623)

Pages:

1193-1199

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. A. Akinlabi, E. T. Akinlabi. Experimental Investigation of Laser beam forming of Titanium and Statistical Analysis of the Effects of Parameters on Curvature. Proceedings of the International MultiConference of Engineers and Computer Scientists 2-013 Vol. II, IMECS 2013, March 13-15, Hong Kong.

Google Scholar

[2] E. T. Akinlabi, Mukul Shukla, and Stephen A. Akinlabi. Laser Forming of Titanium and Its Alloys – An Overview. Journal of World Academy of Science, Engineering and Technology, Vol. 71, (2012).

Google Scholar

[3] S. M. Knupfer and A. J. Moore, The effect of laser forming on mechanical and metallurgical Properties of low carbon steel and aluminium alloy samples, Journal of material Science and Engineering, 2010. 527 (16-17), pp.437-4359.

DOI: 10.1016/j.msea.2010.03.069

Google Scholar

[4] H. Shen, Z. Yao, Y. Shi, J. Hu. An analytical formula for estimating the bending angle by laser forming. J. Mechanical Engineering Science, Pro. IMechE Vol. 220 Part C, 2006. pp.227-231.

DOI: 10.1243/095440606x79721

Google Scholar

[5] M. H. Gollo, S. M. Mahdavian, H. M. Naeini. Statistical analysis of parameter effects on bending angle in laser forming process by pulsed Nd: YAG laser. Optics and Laser Technology 2010. 43 pp.475-482.

DOI: 10.1016/j.optlastec.2010.07.004

Google Scholar

[6] V. Paunoiu, E. A. Squeo, F. Quadrini, C. Gheorghies, and D. Nicoara. Laser bending of stainless steel sheet metals. International Journal of Materials Forum Supply 2008 1. pp.1371-1374.

DOI: 10.1007/s12289-008-0119-8

Google Scholar

[7] S. A. Akinlabi, E. T. Akinlabi, M. Shukla. Effect of laser beam forming on microstructure and mechanical properties of AISI 1008 steel" Presented at ASME McMat 2011, May 30 – June 2, 2011 in Chicago, USA.

DOI: 10.4028/www.scientific.net/amr.299-300.1151

Google Scholar

[8] S. A. Akinlabi, T. Marwala, M. Shukla, E. T. Akinlabi. Laser beam forming of 3 mm steel plate and the evolving properties. International Conference on Manufacturing Engineering ICME 2011 Venice, Italy, 28 – 30th November 2011, organized by World Academy of Science, Engineering and Technology on Materials and Manufacturing (W ASET).

DOI: 10.1002/9781118562857.ch2

Google Scholar

[9] C. Thompson, M. Pridham. Material property changes associated with laser forming of mild steel component. J Meter Process Technology, Vol. 118, 2001, pp.40-44.

DOI: 10.1016/s0924-0136(01)00859-7

Google Scholar

[10] L. J. Yang, J. Tang, M. L. Wang, Y. Wang, Y. B. Chen. Surface characteristic of stainless steel after pulsed laser forming. Applied Surface science Vol. 256, 2010, pp.7018-7026.

DOI: 10.1016/j.apsusc.2010.05.017

Google Scholar

[11] Y. Shi, Z. Yao, H. Shen, J. Hu, Research on the mechanisms of laser forming for the metal plates. International Journal of Machine Tools and Manufacture Vol. 46, 2006, p.1689–1697.

DOI: 10.1016/j.ijmachtools.2005.09.016

Google Scholar

[12] S. P. Edwardson, P. French, K. G. Dearden, K. G. Watkins, W. J. Cantwell. Laser forming of fibre metal laminates. Lasers in Engineering. 2005. Vol. 15, pp.233-255.

Google Scholar

[13] D. F. Walczyk, S. Vittal, Bending of Titanium Sheet Using Laser Forming. New York: SME Journal of Manufacturing Processes, Issue 4, Vol. 2. 2000. pp.258-269.

DOI: 10.1016/s1526-6125(00)70027-2

Google Scholar

[14] M. Marya, G. R. Edwards, An analytical model for the optimization of the laser bending of titanium Ti-6Al-2Sn-4Zr-2Mo. Journal of Materials Processing Technology, 2002, Issue 124. pp.237-244.

DOI: 10.1016/s0924-0136(02)00223-6

Google Scholar

[15] J. Magee, J. Sidhu, R. L Cooke. A prototype laser forming system, Optics and Lasers in Engineering, Vol. 34, 2000, pp.339-353.

DOI: 10.1016/s0143-8166(00)00069-5

Google Scholar

[16] D. A. Hollander, M. V, T. Wittz, R. Sellei. Structural, mechanical and invitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Journal of Biomaterials, Vol. 27, 2006, pp.955-963.

DOI: 10.1016/j.biomaterials.2005.07.041

Google Scholar

[17] D. J. Chen, S. C. Wu, M. Q. Studies on laser forming of Ti-6Al-4V alloy sheet. Journal of Materials Processing Technology, Vol. 152, 2004, pp.62-65.

DOI: 10.1016/j.jmatprotec.2004.02.058

Google Scholar

[18] ASTM E3-11 Standard guide for preparation of metallographic specimens. Accessed from www. astm. org/standards (2011).

Google Scholar