Temperature Monitoring during Laser Beam Forming of Steel Sheets

Article Preview

Abstract:

Laser Beam Forming is a flexible manufacturing process with great promise for sheet and metal forming, hence, considered as a novel manufacturing method for forming and shaping of metallic components. Being a thermo-mechanical forming process that enables parts or components to be formed with external heat of a laser beam, it is important to monitor and measure the temperature during the laser forming process in order to ensure the integrity of the processed components. This study reports on the temperature monitoring and measurement during laser beam forming process of steel sheets. The experimental design followed the L-27 Taguchi Orthogonal Array. The temperature of nine sets of samples laser beamed formed at different process parameters were monitored using the thermocouple data logger. The temperature for all the components formed at the nine parameter windows were analysed during the process. Hence, it was observed that the measured temperature increases with the increasing line energy during the laser beam forming process.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 622-623)

Pages:

811-818

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Kannatey-Asibu, Principle of laser materials processing. John Wiley & sons, Inc., New York, N.Y., (2009).

Google Scholar

[2] M. Safari, M. Farzin. Experimental and numerical investigation of laser bending of tailor machined blanks. J. Optics & Laser Technology, 48 (2013), pp.513-522.

DOI: 10.1016/j.optlastec.2012.11.030

Google Scholar

[3] Y. Namba. Laser forming in space. In: CP. Wang editor. Proceedings of the Int. Conf. of laser and electro optics (ICALEO085), Boston, MA. Orlando: Laser Institute of America; (1985) p.403–407.

Google Scholar

[4] S. A. Akinlabi, T. Marwala, E. T. Akinlabi, M. Shukla. Effect of Scan Velocity on Resulting Curvatures during Laser Beam Bending of AISI 1008 Steel Plate. J. of Advanced material Research, Vols. 299-300, (2011) pp.1151-1156.

DOI: 10.4028/www.scientific.net/amr.299-300.1151

Google Scholar

[5] F. Huang, Z. Jiang, X. Liu, J. Lian, L. Chen. Microstructure and properties of thin wall by laser cladding forming. J. of Mat. Proc. Tech. 209, (2009) pp.4970-4976.

DOI: 10.1016/j.jmatprotec.2009.01.019

Google Scholar

[6] S. A. Akinlabi, E. T. Akinlabi, M. Shukla. Effect of Laser Forming on Microstructure and Mechanical Properties of AISI 1008 Steel. In the Proceedings of American Society of Mechanical Engineers, McMat 2011, Chicago, Illinois, USA May 30 – June 2, (2011).

Google Scholar

[7] P. Cheng, Y. L. Yao, C. Liu, D. Pratt, Y. Fan. Analysis and Prediction of size effect on the laser forming of sheet metal. J. of manufacturing process, vol. 7/No, 1. (2005) pp.28-41.

DOI: 10.1016/s1526-6125(05)70079-7

Google Scholar

[8] G. Yu, K. Masubuti, T. Maekawa, N. M. Patrikalakis. FEM Simulation of Laser Forming of Metal Plates, J. of Manuf. Sci. and Eng., ASME, 123 August, 2001. pp.405-410.

DOI: 10.1115/1.1371930

Google Scholar

[9] S. P. Edwardson, K. Edwards, C. Carey, G. Dearden, K. G. Watkins. Laser forming for ship building applications. Steel Tech. vol. 2, No. 4. (2008). pp.42-46.

Google Scholar

[10] A. Els-Botes. Material characterisations of laser formed dual phase steel Sample. D. Tech thesis. Department of Mechanical Engineering, Faculty of Engineering, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa, (2005).

Google Scholar

[11] C. Thompson, M. Pridham. Material property changes associated with laser forming of mild steel Sample. J. of Mat. Proc. Tech., 118, (2001) pp.40-44.

DOI: 10.1016/s0924-0136(01)00859-7

Google Scholar

[12] V. Paunoiu, E. A. Squeo, F. Quadrini, C. Gheorghies, D. Nicoara. Laser Bending of Stainless Steel Sheet Metals. Int. J. of Mat. For. Suppl 1 (2008) pp.1371-1374.

DOI: 10.1007/s12289-008-0119-8

Google Scholar

[13] K. Maji, R. Shukla, A. K. Nath, D. K. Pratihar. Finite Element Analysis and Experimental Investigations on Laser Bending of AISI304 Stainless Steel Sheet, Proc. Eng. Vol. 64, (2013). pp.528-535, ISSN 1877-7058.

DOI: 10.1016/j.proeng.2013.09.127

Google Scholar

[14] M. J. Dutta, A. K. Nath, I. Manna. Studies on Laser bending of stainless steel. J. of Mat. Sci. and Eng. A 385, (2004). p.113 – 122.

Google Scholar

[15] L. J. Yang, J. Tang, M. L. Wang, Y. Wang, Y. B. Chen. Surface characteristics of stainless steel after pulsed laser forming. J. of Appl. Surf. Sci. 256, (2010). pp.7018-7026.

DOI: 10.1016/j.apsusc.2010.05.017

Google Scholar

[16] M. Merklein, T. Hennige, M. Geiger. Laser forming of aluminium and aluminium alloys—microstructural investigation. J. of Mat. Proc. Tech. 115. 1 (2001), pp.159-165.

DOI: 10.1016/s0924-0136(01)00759-2

Google Scholar

[17] E. C. Santos, M. Shiomi, K. Osakada, T. Laoui. Rapid manufacturing of metal components by laser forming. Int. J. of Mach. Tools and Manuf.  46(12), (2006), pp.1459-1468.

DOI: 10.1016/j.ijmachtools.2005.09.005

Google Scholar

[18] J. Magee, K. G. Watkins, W. M. T. Steen. Laser forming of aerospace alloys. Section E- Proceedings of the Int. Conf. of laser and electro optics ICALEO (1997) pp.156-165.

Google Scholar

[19] D. P. Shidid, M. H., Gollo, M., Brandt, & M. Mahdavian. Study of effect of process parameters on titanium sheet metal bending using Nd: YAG laser. J. of Optics and Laser Tech. 47 (2013), pp.242-247.

DOI: 10.1016/j.optlastec.2012.07.033

Google Scholar

[20] D. F. Walczyk, S. Vittal. Bending of Titanium Sheet using Laser forming. J. of Manuf. Proc. vol. 2/No. 4, (2000) pp.258-269.

DOI: 10.1016/s1526-6125(00)70027-2

Google Scholar

[21] W. Shichun, Z. Jinsong. An experimental study of laser bending for sheet metals. J. of Mat. Proc. Tech. 110, (2001) pp.160-163.

DOI: 10.1016/s0924-0136(00)00860-8

Google Scholar

[22] S. A. Akinlabi, T. Marwala, M. Shukla, E. T. Akinlabi. Laser Forming of 3 mm Steel Plate and the Evolving Properties. In the Proc. of the Int. Conf. on Manuf. Eng. (2011).

Google Scholar

[23] M. L. Chen, L. Jeswiet, P. J. Bates, G. Zak. Experimental study on sheet metal bending with medium-power diode laser. J. of Eng. Manuf. Vol. 222 Part B, (2008). pp.382-389.

DOI: 10.1243/09544054jem951

Google Scholar

[24] M. Hoseinpour Gollo, H. Moslemi Naeini, G. H. Liaghat, S. Jelvani. Theoretical and Experimental Study of Sheet Metal Bending By Pulsed Nd: YAG Laser. ISME Journal, Vol. 10, No. 1, (2008) pp.15-35.

DOI: 10.1007/s12289-008-0010-7

Google Scholar

[25] C. Thompson, M. Pridham. Material property changes associated with laser forming of mild steel sample. J. of Mat. Proc. Tech. 118 (2001), pp.40-44.

DOI: 10.1016/s0924-0136(01)00859-7

Google Scholar

[26] J. Hu, D., Dang, H. Shen, Z. Zhang. A finite element model using multi-layered shell element in laser forming. Optics & Laser Technology, 44(4), 1148-1155, (2012).

DOI: 10.1016/j.optlastec.2011.09.028

Google Scholar

[27] H. Shen, Y. Shi, Z. Yao. Numerical simulation of the laser forming of plates using two simultaneous scans. J. Comp. Mat. Sci. 37, (2006) pp.239-245.

DOI: 10.1016/j.commatsci.2005.06.012

Google Scholar

[28] M. Sistaninia, M. Sistaninia, H. Moeanodini. Laser forming of plates using rotating and dithering beams. J. of Comp. Mat. Sci. 45, (2009) pp.480-488.

DOI: 10.1016/j.commatsci.2008.11.011

Google Scholar

[29] . Stefan, A. M. Paradowska, O. Kirstein, A. Moore. Investigation of Residual Stress in Laser Forming Steel Plates using Neutron Diffraction. J. Mat. Sci. Forum, Vol. 652, (2010) pp.123-128.

DOI: 10.4028/www.scientific.net/msf.652.123

Google Scholar