[1]
A. Kumar, S.B. Singh, K.K. Ray, Influence of Bainite/Martensite-Content on the Tensile Properties of Low Carbon Dual-Phase Steels, Mater. Sci. Eng. A 474 (2008) 270–282.
DOI: 10.1016/j.msea.2007.05.007
Google Scholar
[2]
Ming-hui CAI, Hua DING, Young-kook LEE, Zheng-you TANG, Effects of Si on Microstructural Evolution and Mechanical Properties of Hot-rolled Ferrite and Bainite Dual-phase Steels, ISIJ International, Vol. 51 (2011), No. 3, p.476–481.
DOI: 10.2355/isijinternational.51.476
Google Scholar
[3]
A. Barbacki, J. Mater. Process. Technol., 53 (1995), 57.
Google Scholar
[4]
M. Sudo, S. I. Hashimoto and S. Kambe, Trans. Iron Steel Inst. Jpn., 23 (1983), 303.
Google Scholar
[5]
K. Hasegawa, K. Kawamura, T. Urabe and Y. Hosoya, Effects of Microstructure on Stretch-flange-formability of 980 MPa Grade Cold-rolled Ultra High Strength Steel Sheets ISIJ Int., 44 (2004), 603-609.
DOI: 10.2355/isijinternational.44.603
Google Scholar
[6]
Shaopeng Qu, Yucheng Zhang, Xiaolu Pang, Kewei Gao, Influence of temperature field on the microstructure of low carbon microalloyed ferrite–bainite dual-phase steel during heat treatment, Materials Science and Engineering A 536 (2012) 136– 142.
DOI: 10.1016/j.msea.2011.12.090
Google Scholar
[7]
Y. R. Cho, J. H. Chung, H. H. Ku and I. B. Kim, Effect of controlled cooling on the formability of TS 590 MPa grade hot-rolled high strength steels, Met. Mater. Int., 5 (1999), 571-578.
DOI: 10.1007/bf03026307
Google Scholar
[8]
A. S. Podder, D. Bhattcharjee and R. K. Ray, Effect of Martensite on the Mechanical Behavior of Ferrite–Bainite Dual Phase Steels": ISIJ Int., 47 (2007), 1058-1064.
DOI: 10.2355/isijinternational.47.1058
Google Scholar
[9]
CAI Ming-hui, Ding Hua, ZHANG Jian-su, Li Long, LI Xiao-bin and DU Lin-xiu, Transformation Behavior of Low Carbon Steels Containing Two Different Si Contents, Journal of Iron and Steel Research, International. (2009), 16 (2): 55-60.
DOI: 10.1016/s1006-706x(09)60028-5
Google Scholar
[10]
TRZASKA, J. et al., Modelling of CCT Diagrams for Engineering and Constructional Steels, Journal of Materials Processing Technology, 192-193 (2007), 504-510.
DOI: 10.1016/j.jmatprotec.2007.04.099
Google Scholar
[11]
KARIYA, N. High Carbon Hot-Rolled Steel Sheet and Method for Production Thereof. European Patent Application EP 2. 103. 697. A1, 23. 09. (2009), 15 p.
Google Scholar
[12]
BORATTO, F. et al., Effect of Chemical Composition on Critical Temperatures of Microalloyed Steels, THERMEC '88. Proceedings. Iron and Steel Institute of Japan, Tokyo, (1988), 383-390.
Google Scholar
[13]
Van Bohemen, S.M.C., Bainite and Martensite Start Temperature Calculated with Exponential Carbon Dependence, Materials Science and Technology, 28, 4, (2012), 487-495.
DOI: 10.1179/1743284711y.0000000097
Google Scholar
[14]
KUNITAKE, T., Prediction of Ac1, Ac3 and Ms Temperatures by Empirical Formulas. Heat Treating (Japan), 41, (2001), 164-168.
Google Scholar
[15]
Guhui Gao, Han Zhang, Zhunli Tan, Wenbo Liu and Bingzhe Bai, A carbide-free bainite /martensite /austenite triplex steel with enhanced mechanical properties treated by a novel quenching–partitioning–tempering process, Materials Science & Engineering A 559 (2013).
DOI: 10.1016/j.msea.2012.08.064
Google Scholar