[1]
Y. Qin, Micro-manufacturing engineering and technology, Elsevier, Oxford, (2010).
Google Scholar
[2]
W. Yun, D. Peilong, X. Zhenying, Y. Hua, W. Jiangping, W. Jingjing, A constitutive model for thin sheet metal in micro-forming considering first order size effects , Mater. Design 31 (2010) 1010-1014.
DOI: 10.1016/j.matdes.2009.07.037
Google Scholar
[3]
A. Zavaliangos, J. Zhang, M. Krammer, J.R. Groza, Temperature evolution during field activated sintering , Mater. Sci. Eng. A 379 (2004) 218-228.
DOI: 10.1016/j.msea.2004.01.052
Google Scholar
[4]
Q. Hu, P. Luo, Y. Yan, J. Li, Microstructure evolution and wear properties of bulk MoSi2 fabricated by field activated sintering, Int. J. Refract. Met. H. 29 (2011) 470-477.
DOI: 10.1016/j.ijrmhm.2011.02.006
Google Scholar
[5]
K. Huang, Y. Yang, Y. Qin, G. Yang, Densification behavior of copper powder during the coupled multi-physics fields-activated microforming, Int. J Adv. Manuf. Tech. 69 (2013) 2651-2657.
DOI: 10.1007/s00170-013-5226-0
Google Scholar
[6]
D. Lu, Y. Yang, Y. Qin, G. Yang, Forming Microgears by Micro-FAST Technology, J. Microelectromech. S., 22 (2013) 708-715.
DOI: 10.1109/jmems.2013.2241394
Google Scholar
[7]
V.V. Dabhade, T.R.R. Mohan, P. Ramakrishnan, Initial sintering kinetics of attrition milled nanocrystalline titanium powders, Mater. Sci. Eng. A (2007) 386-394.
DOI: 10.1016/j.msea.2006.10.097
Google Scholar
[8]
F.F. Lange, Densification of powder compacts: An unfinished story, J. Eur. Ceram. Soc. 28 (2008) 1509-1516.
DOI: 10.1016/j.jeurceramsoc.2007.12.016
Google Scholar
[9]
H. Borodianska, D. Demirskyi, Y. Sakka, P. Badica, O. Vasylkiv, Grain boundary diffusion driven spark plasma sintering of nanocrystalline zirconia, Ceram. Int. 38 (2012) 4385-4389.
DOI: 10.1016/j.ceramint.2011.12.064
Google Scholar
[10]
J.S. Lee, L. Klinger, E. Rabkin, Particle rearrangement during sintering of heterogeneous powder mixtures: A combined experimental and theoretical study, Acta Mater. 60 (2012) 123-130.
DOI: 10.1016/j.actamat.2011.09.048
Google Scholar
[11]
A. Du, Y. Yang, Y. Qin, G. Yang, Effects of Heating Rate and Sintering Temperature on 316 L Stainless Steel Powders Sintered Under Multiphysical Field Coupling, Mater. Manuf. Process 28 (2012) 66-71.
DOI: 10.1080/10426914.2012.709349
Google Scholar
[12]
Y.V.R.K. Prasad, K.P. Rao, Mechanisms of high temperature deformation in electrolytic copper in extended ranges of temperature and strain rate, Mater. Sci. Eng. A 374 (2004) 335-341.
DOI: 10.1016/j.msea.2004.03.007
Google Scholar
[13]
K. Feng, Y. Yang, M. Hong, J. Wu, S. Lan, Intensified sintering of iron powders under the action of an electric field: Effect of technologic parameter on sintering densification, J. Mater. Process Tech. 208 (2008) 264-269.
DOI: 10.1016/j.jmatprotec.2007.12.117
Google Scholar
[14]
Di Yang, H. Conrad, Influence of an electric field on the superplastic deformation of 3Y-TZP, Scripta Mater. 36 (1997) 1431-1435.
DOI: 10.1016/s1359-6462(97)00045-6
Google Scholar
[15]
A. Fais, Processing characteristics and parameters in capacitor discharge sintering, J Mater. Process Tech. 210 (2010) 2223-2230.
DOI: 10.1016/j.jmatprotec.2010.08.009
Google Scholar
[16]
H. Conrad, Electroplasticity in metals and ceramics, Mater. Sci. Eng. A 287 (2000) 276-287.
Google Scholar
[17]
J. Xu, B. Guo, C. Wang, D. Shan, Blanking clearance and grain size effects on micro deformation behavior and fracture in micro-blanking of brass foil, Int. J Mach. Tool. Manuf. (2012) 27-34.
DOI: 10.1016/j.ijmachtools.2012.04.001
Google Scholar
[18]
N. Beri, S. Maheshwari, C. Sharma, A. Kumar, Technological advancement in electrical discharge machining with powder metallurgy processed electrodes: a review, Mater. Manuf. Process 25 (2010) 1186-1197.
DOI: 10.1080/10426914.2010.512647
Google Scholar
[19]
A. Maximenko, E. Olevsky, Homogeneity of isostatic pressure-assisted sintering of agglomerated powder, Int. J Solids Struct. 42 (2005) 503-515.
DOI: 10.1016/j.ijsolstr.2004.06.040
Google Scholar
[20]
Y. Zhou, K. Hirao, Y. Yamauchi, S. Kanzaki, Effects of heating rate and particle size on pulse electric current sintering of alumina, Scripta Mater. 48 (2003) 1631-1636.
DOI: 10.1016/s1359-6462(03)00138-6
Google Scholar
[21]
L. Olmos, C.L. Martin, D. Bouvard, Sintering of mixtures of powders: Experiments and modelling, Powder Tech. 190 (2009) 134-140.
DOI: 10.1016/j.powtec.2008.04.057
Google Scholar