Sintering Kinetics of the Powder during Fields-Activated Micro-Forming and Sintering (Micro-FAST) of Copper Micro-Gears

Article Preview

Abstract:

Forming of micro-components from powder with fields-activated sintering technology (FAST) renders different forming and sintering mechanisms, comparing to that occurring during the forming of macro-sized components with a similar technology. Establishing a good understanding of these mechanisms would help process design and control aiming at achieving desired quality of the components to be formed. This paper presents a study and the results on the sintering kinetics of the powder during Micro-FAST for the fabrication of micro-gears (the module is 0.2 and the pitch diameter 1.6 mm) from copper powder. The results showed that the densification of copper powder is related largely to the bulk plastic-deformations of the particles and the melting of the particles at contact interfaces. Particularly, it is revealed that plastic deformations of the copper particles mainly occurred at approximately 340 °C and melting of the particle-interfaces at approximately 640 °C. Differently, in a densification process with a traditional powder sintering method, grain growth and neck growth would, normally, be two dominant mechanisms that achieve the densification of powder.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 622-623)

Pages:

854-860

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Qin, Micro-manufacturing engineering and technology, Elsevier, Oxford, (2010).

Google Scholar

[2] W. Yun, D. Peilong, X. Zhenying, Y. Hua, W. Jiangping, W. Jingjing, A constitutive model for thin sheet metal in micro-forming considering first order size effects , Mater. Design 31 (2010) 1010-1014.

DOI: 10.1016/j.matdes.2009.07.037

Google Scholar

[3] A. Zavaliangos, J. Zhang, M. Krammer, J.R. Groza, Temperature evolution during field activated sintering , Mater. Sci. Eng. A 379 (2004) 218-228.

DOI: 10.1016/j.msea.2004.01.052

Google Scholar

[4] Q. Hu, P. Luo, Y. Yan, J. Li, Microstructure evolution and wear properties of bulk MoSi2 fabricated by field activated sintering, Int. J. Refract. Met. H. 29 (2011) 470-477.

DOI: 10.1016/j.ijrmhm.2011.02.006

Google Scholar

[5] K. Huang, Y. Yang, Y. Qin, G. Yang, Densification behavior of copper powder during the coupled multi-physics fields-activated microforming, Int. J Adv. Manuf. Tech. 69 (2013) 2651-2657.

DOI: 10.1007/s00170-013-5226-0

Google Scholar

[6] D. Lu, Y. Yang, Y. Qin, G. Yang, Forming Microgears by Micro-FAST Technology, J. Microelectromech. S., 22 (2013) 708-715.

DOI: 10.1109/jmems.2013.2241394

Google Scholar

[7] V.V. Dabhade, T.R.R. Mohan, P. Ramakrishnan, Initial sintering kinetics of attrition milled nanocrystalline titanium powders, Mater. Sci. Eng. A (2007) 386-394.

DOI: 10.1016/j.msea.2006.10.097

Google Scholar

[8] F.F. Lange, Densification of powder compacts: An unfinished story, J. Eur. Ceram. Soc. 28 (2008) 1509-1516.

DOI: 10.1016/j.jeurceramsoc.2007.12.016

Google Scholar

[9] H. Borodianska, D. Demirskyi, Y. Sakka, P. Badica, O. Vasylkiv, Grain boundary diffusion driven spark plasma sintering of nanocrystalline zirconia, Ceram. Int. 38 (2012) 4385-4389.

DOI: 10.1016/j.ceramint.2011.12.064

Google Scholar

[10] J.S. Lee, L. Klinger, E. Rabkin, Particle rearrangement during sintering of heterogeneous powder mixtures: A combined experimental and theoretical study, Acta Mater. 60 (2012) 123-130.

DOI: 10.1016/j.actamat.2011.09.048

Google Scholar

[11] A. Du, Y. Yang, Y. Qin, G. Yang, Effects of Heating Rate and Sintering Temperature on 316 L Stainless Steel Powders Sintered Under Multiphysical Field Coupling, Mater. Manuf. Process 28 (2012) 66-71.

DOI: 10.1080/10426914.2012.709349

Google Scholar

[12] Y.V.R.K. Prasad, K.P. Rao, Mechanisms of high temperature deformation in electrolytic copper in extended ranges of temperature and strain rate, Mater. Sci. Eng. A 374 (2004) 335-341.

DOI: 10.1016/j.msea.2004.03.007

Google Scholar

[13] K. Feng, Y. Yang, M. Hong, J. Wu, S. Lan, Intensified sintering of iron powders under the action of an electric field: Effect of technologic parameter on sintering densification, J. Mater. Process Tech. 208 (2008) 264-269.

DOI: 10.1016/j.jmatprotec.2007.12.117

Google Scholar

[14] Di Yang, H. Conrad, Influence of an electric field on the superplastic deformation of 3Y-TZP, Scripta Mater. 36 (1997) 1431-1435.

DOI: 10.1016/s1359-6462(97)00045-6

Google Scholar

[15] A. Fais, Processing characteristics and parameters in capacitor discharge sintering, J Mater. Process Tech. 210 (2010) 2223-2230.

DOI: 10.1016/j.jmatprotec.2010.08.009

Google Scholar

[16] H. Conrad, Electroplasticity in metals and ceramics, Mater. Sci. Eng. A 287 (2000) 276-287.

Google Scholar

[17] J. Xu, B. Guo, C. Wang, D. Shan, Blanking clearance and grain size effects on micro deformation behavior and fracture in micro-blanking of brass foil, Int. J Mach. Tool. Manuf. (2012) 27-34.

DOI: 10.1016/j.ijmachtools.2012.04.001

Google Scholar

[18] N. Beri, S. Maheshwari, C. Sharma, A. Kumar, Technological advancement in electrical discharge machining with powder metallurgy processed electrodes: a review, Mater. Manuf. Process 25 (2010) 1186-1197.

DOI: 10.1080/10426914.2010.512647

Google Scholar

[19] A. Maximenko, E. Olevsky, Homogeneity of isostatic pressure-assisted sintering of agglomerated powder, Int. J Solids Struct. 42 (2005) 503-515.

DOI: 10.1016/j.ijsolstr.2004.06.040

Google Scholar

[20] Y. Zhou, K. Hirao, Y. Yamauchi, S. Kanzaki, Effects of heating rate and particle size on pulse electric current sintering of alumina, Scripta Mater. 48 (2003) 1631-1636.

DOI: 10.1016/s1359-6462(03)00138-6

Google Scholar

[21] L. Olmos, C.L. Martin, D. Bouvard, Sintering of mixtures of powders: Experiments and modelling, Powder Tech. 190 (2009) 134-140.

DOI: 10.1016/j.powtec.2008.04.057

Google Scholar