[1]
H.S. Shi, D.F. Li, K. Wu. etc, Research progress on the effect of steel slag on the cement concrete performance, Cement Tech. 5(2011) 29-34.
Google Scholar
[2]
J. Geiseler, Use of steelworks slag in Europe, Waste Management 16(1996) 59-63.
DOI: 10.1016/s0956-053x(96)00070-0
Google Scholar
[3]
M.D. Chen, M.K. Zhou, Y.X. Lun. etc, Research on high-added-value utilization of steel slay, China Min Magazine 15(2006) 79-83.
Google Scholar
[4]
Q.Z. Xiao, Expansive destruction and suppression of steel slag, Chinese Ceram Soc 24(1996) 635-640.
Google Scholar
[5]
J. Xiong, L. Zheng, Y. Yuan, Experimental study on compressive strength of rubberized concrete, Concrete 12(2004) 40-42.
Google Scholar
[6]
J. Zelic, Properties of concrete pavements prepared with ferrochromium slag as concrete aggregate, Cem Conc Res. 35(2005) 2340-2349.
DOI: 10.1016/j.cemconres.2004.11.019
Google Scholar
[7]
A. Rai, J. Prabakar, C.B. Raju, etc, Metallurgical slag as a component in blended cement, Constr Building Mats, 16(2002) 489-494.
DOI: 10.1016/s0950-0618(02)00046-6
Google Scholar
[8]
C. J Shi, Characteristics and cementitious properties of ladle slag fines from steel production, J . Cem Conc Res. 32(2002) 459-462.
DOI: 10.1016/s0008-8846(01)00707-4
Google Scholar
[9]
J. Geiseler, Use of steelworks slag in Europe, J. Waste Ma, 16(1996) 59-63.
DOI: 10.1016/s0956-053x(96)00070-0
Google Scholar
[10]
K. Wu, A. Yan, W. Yao, et al. Effect of metallic aggregate on strength and fracture properties of HPC, Cem Conc Res. 31(2001) 113-118.
DOI: 10.1016/s0008-8846(00)00431-2
Google Scholar
[11]
H.S. Shi, L. Guo, Study on effects of steel slag on structure formation of hardened cement paste, Cement, 7(2005) 1-4.
Google Scholar
[12]
H.S. Shi, X.L. Guo, L.L. Kan, Study of improvement on volume stability of steel slag cement paste, Cement, 12(2007) 1-4.
Google Scholar
[13]
Z.J. Li, K.B. Shi, Y.Z.T.L.P. Nuerkaili, Experimental study on the cracking resistance at early ages of high performance concrete added with lithium slag and steel slag, Concrete, 2(2013) 25-27.
Google Scholar
[14]
H. Beshr, A.A. Almusallam, M. Maslehuddin. Effect of coarse aggregate quality on the mechanical properties of high strength concrete, Constr Building Materials, 17(2003) 97-103.
DOI: 10.1016/s0950-0618(02)00097-1
Google Scholar
[15]
M. Maslehuddin, A.M. Sharif, M. Shameem, et al. Comparison of properties of steel slag and crushed limestone aggregate concretes, Constr Building Mats, 17(2003) 105-112.
DOI: 10.1016/s0950-0618(02)00095-8
Google Scholar
[16]
I. Papayianni, E. Anastasiou, Production of high-strength concrete using high volume of industrial by-products, Constr Building Mats, 24(2010) 1412-1417.
DOI: 10.1016/j.conbuildmat.2010.01.016
Google Scholar
[17]
J.L. Shang, L.L. Xing, Study on interfacial transition zone of steel slag coarse aggregate concrete, J. Building Mats, 2(2013) 217-220.
Google Scholar
[18]
Y.X. Lun, M.K. Zhou, M.Z. Chen, Volume Stability and Application Prospect of Steel Slag Aggregates in Engineering, J. Express Inf of Min Int, 4(2006) 37-40.
Google Scholar
[19]
J.M. Manso, J,A. Polanco, M. Losanez, et al. Durability of concrete made with EAF slag as aggregate, Cem Conc Com, 28(2006) 528-534.
DOI: 10.1016/j.cemconcomp.2006.02.008
Google Scholar
[20]
W. Lei, Y.J. Gai, X.C. Wang, Experiment on Mechanical Properties of Crumb Rubber Concrete, J. Northeast Forestry U, 7(2005) 63-64.
Google Scholar
[21]
J.F. Kang, H.B. Ren, P.Z. Zhang, Cracking- resistance and flexural property of rubberized concrete, Acta Materiae Compositae Sinica, 6(2006) 158-162.
Google Scholar
[22]
J.Y. Wang, L.Y. Zhang, Y.M. Wang, Study on elastic rubber concrete compression, bending deformation performance, China Concrete and Cement Prod, 2(2008) 6-10.
Google Scholar
[23]
Z.Y. Zhao, Q. Bi, L.Y. Wang, et al. Plastic cracking and anti impact properties of crumb rubber modified cement based materials, J. China Concrete and Cement Products, 4(2008) 1-5.
Google Scholar
[24]
J.F. Kang, K. Fan, Abrasion Resistance of Rubberized Concrete, J. Tianjin U, 8(2011) 727-731.
Google Scholar
[25]
J.F. Kang, Z.L. Zhang, C.C. Han, Strength and deformation behaviors of roller- compacted rubberized concrete, J. Acta Materiae Compositae Sinica, 2(2009) 155-159.
Google Scholar
[26]
C. Meyer, The greening of the concrete industry, Cem Conc Com, 31(2009) 601-605.
Google Scholar
[27]
M.C. Bignozzi, F. Sandrolini, Tyre rubber waste recycling in self-compacting concrete, Cem Conc Res. 36(2006) 735-739.
DOI: 10.1016/j.cemconres.2005.12.011
Google Scholar
[28]
Y.M. Zhang, S.X. Chen, B. Chen, et al. Frost resistance and permeability of rubber included concrete, Key Eng Mater, 2006, (302-303) 120-124.
DOI: 10.4028/www.scientific.net/kem.302-303.120
Google Scholar
[29]
G. Li, M.A. Stubblefield, G. Garrick, et al. Development of waste tire modified concrete, J. Cement andConcrete Res, 34(2004) 2283-2289.
DOI: 10.1016/j.cemconres.2004.04.013
Google Scholar
[30]
E. Ozbay, M. Lachemi, U. Sevim. Compressive strength, abrasion resistance and energy absorption capacity of rubberized concretes with and without slag, Mat and Struct, 44(2011) 1297-1307.
DOI: 10.1617/s11527-010-9701-x
Google Scholar
[31]
D. Raghavan, H. Huynh, C.F. Ferraris, Workability, mechanical properties, and chemical stability of a recycled tyre rubber-filled cementitious composite, J. Maters Sci, 33(1998) 1745-1752.
DOI: 10.1023/a:1004372414475
Google Scholar
[32]
Y.M. Zhang, Z.Y. Zhao, S.X. Chen, etc, Impact of rubber powder on frost resistance of concrete in water and NaCl solution, J. Southeast U (Natural Science Edition), 36(2006) 248-252.
Google Scholar
[33]
K.P. Zha, C.L. Liu, D.P. Chen, Strength and Shrinkage Deformation of Concrete with Steel Slag and Scrap Tire Particles as Aggregates, Anhui U of Tech (Natural Science), 30(2013) 275-279.
Google Scholar