Implementation of Convolutional Encoder in Quantum-Dot Cellular Automata

Article Preview

Abstract:

As a nanoelectronic system, Quantum-dot cellular automata (QCA) is very likely to present high defect and fault rates. Therefore making QCA bits distortion-free is a necessary work. In this paper, we present the QCA based rate-1/2 and memory length-2 convolutional encoders that can generate one kind of error correcting codes from the perspective of information redundancy. Three schemes of layouts are presented and compared, and the majority-based type has the compactest layout and lowest latency. Our simulation results demonstrate that these encoders can all functionally work.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

1078-1084

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Craig S. Lent, P. Douglas Tougaw, Wolfgang, and Gary H. Bernstein, Quantum cellular automata, Nanotechnology 4 (1993) 49-57.

DOI: 10.1088/0957-4484/4/1/004

Google Scholar

[2] P. Douglas Tougaw, Craig S. Lent, Logic devices implemented using quantum cellular automata, J. Appl. Phys. 75 (1994) 1818-1825.

DOI: 10.1063/1.356375

Google Scholar

[3] Géza Tóth and Craig S. Lent, Quasiadiabatic switching for metal-island quantum-dot cellular automata, J. Appl. Phys. 85 (1999) 2977-2984.

DOI: 10.1063/1.369063

Google Scholar

[4] Douglas Tougaw and Mahfuza Khatun, A scalable signal distribution network for quantum-dot cellular automata, IEEE Trans. Nanotechnol. , 12 (2013) 215-224.

DOI: 10.1109/tnano.2013.2243162

Google Scholar

[5] G. A. Anduwan, B. D. Padgett, M. Kuntzman, M. K. Hendrichsen, et al, Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices, J. Appl. Phys. 107 (2010) 114306.

DOI: 10.1063/1.3428453

Google Scholar

[6] M. Khatun, T. Barclay, I Sturzu and P. D. Tougaw, Fault tolerance properties in quantum-dot cellular automata devices, J. Phys. D: Appl. Phys. 39 (2006) 1489-1494.

DOI: 10.1088/0022-3727/39/8/006

Google Scholar

[7] Xiaojun Ma, Fabrizio Lombardi, Fault Tolerant Schemes for QCA Systems, IEEE Int. Symposium on Defect and Fault Tolerance of VLSI Systems, Boston, MA, 2008, pp.236-244.

DOI: 10.1109/dft.2008.12

Google Scholar

[8] Timothy J. Dysart, Peter M. Kogge, Reliability impact of N-modular redundancy in QCA, IEEE Trans. Nanotechnol. 10 (2011) 1015-1022.

DOI: 10.1109/tnano.2010.2099131

Google Scholar

[9] Sanjukta Bhanja, Marco Ottavi, Fabrizio Lombardi, and Salvatore Pontarelli, Novel designs for thermally robust coplanar crossing in QCA, Proc. Conf. on Design, automation and test, Belgium, 2006, pp.786-791.

DOI: 10.1109/date.2006.244120

Google Scholar

[10] Ferdinand Peper, Nanocomputers, Encyclopedia of complexing and systems science, Springer, 2009, pp.5859-5889.

DOI: 10.1007/978-0-387-30440-3_347

Google Scholar

[11] Mirmansour Ziabari, Ahmad Mohades Kassai, et al, Designing a hamming coder/decoder using QCAs, J. Appl. Sci. 8, (2008) 2569-2576.

DOI: 10.3923/jas.2008.2569.2576

Google Scholar

[12] Muhammad Awais, Marco Vacca, Mariagrazia Graziano, et al, Quantum dot cellular automata check node implementation for LDPC decoders, IEEE Trans. Nanotechnol. 12, (2013) 368-377.

DOI: 10.1109/tnano.2013.2251422

Google Scholar

[13] K. Navi, R. Farazkish, S. Sayedsalehi, and M. Rahimi Azghadi, A new quantum-dot cellular automata full-adder, Microelectronics J. 41 (2010) 820-826.

DOI: 10.1016/j.mejo.2010.07.003

Google Scholar

[14] Rumi Zhang, Walus K., Wang Wei, and Jullien G. A., A method of majority logic reduction for quantum cellular automata, IEEE Trans. Nanotechnol. 3, (2004) 443-450.

DOI: 10.1109/tnano.2004.834177

Google Scholar

[15] Konrad Walus, Timothy J. Dysart, Graham A. Jullien, and R. Arief Budiman, QCADesigner: A rapid design and simulation Tool for quantum-dot cellular automata, IEEE Trans. Nanotechnol. 3, (2004) 26-31.

DOI: 10.1109/tnano.2003.820815

Google Scholar