Constructing Dual Band Metamaterial Absorbers at Mid-Infrared by Employing Multi-Resonant Structures

Article Preview

Abstract:

In this paper, we present two metamaterial absorbers (MMA) at mid-infrared using multi-resonant structures. The dual band MMAs employ the typical metal/dielectric/metal structure with 80 nm gold ground plane at the bottom, 190 nm SiO2 dielectric spacer in the middle and periodic gold patterns on top. The top resonant structure in MMA1 consists of a gold cross resonator ringed by four gold split-ring resonators (SRR) at the ends of the cross, while in the unit cell of MMA2, gold SRRs are placed at the four quadrants of the cross resonator. MMA1 shows two absorption peaks of 90.3% and 88.4% at 4.17μm and 4.86μm respectively, and the absorption peaks of MMA2 are observed to be 72.4% at 3.90μm and 48.0% at 5.66μm.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

1059-1063

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. M. Watts, X. Liu, and W. J. Padilla, Metamaterial electromagnetic wave absorbers, Advanced Materials, vol. 24, pp. OP98-OP120, (2012).

DOI: 10.1002/adma.201200674

Google Scholar

[2] N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, Perfect metamaterial absorber, Physical review letters, vol. 100, p.207402, (2008).

DOI: 10.1103/physrevlett.100.207402

Google Scholar

[3] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Taming the blackbody with infrared metamaterials as selective thermal emitters, Physical review letters, vol. 107, p.045901, (2011).

DOI: 10.1103/physrevlett.107.045901

Google Scholar

[4] F. Alves, D. Grbovic, B. Kearney, N. V. Lavrik, and G. Karunasiri, Bi-material terahertz sensors using metamaterial structures, Optics Express, vol. 21, pp.13256-71, Jun 3 (2013).

DOI: 10.1364/oe.21.013256

Google Scholar

[5] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Infrared perfect absorber and its application as plasmonic sensor, Nano letters, vol. 10, pp.2342-2348, (2010).

DOI: 10.1021/nl9041033

Google Scholar

[6] H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, et al., A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime, Journal of Optics, vol. 14, p.085102, (2012).

DOI: 10.1088/2040-8978/14/8/085102

Google Scholar

[7] Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. Cumming, A terahertz polarization insensitive dual band metamaterial absorber, Optics Letters, vol. 36, pp.945-947, (2011).

DOI: 10.1364/ol.36.000945

Google Scholar

[8] N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, and L. Deng, Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers, Optics letters, vol. 38, pp.1125-1127, (2013).

DOI: 10.1364/ol.38.001125

Google Scholar

[9] B. Zhang, J. Hendrickson, and J. Guo, Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures, JOSA B, vol. 30, pp.656-662, (2013).

DOI: 10.1364/josab.30.000656

Google Scholar

[10] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R. W. Alexander, et al., Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared, Applied Optics, vol. 22, pp.1099-1119, (1983).

DOI: 10.1364/ao.22.001099

Google Scholar

[11] X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Infrared spatial and frequency selective metamaterial with near-unity absorbance, Physical review letters, vol. 104, p.207403, (2010).

DOI: 10.1103/physrevlett.104.207403

Google Scholar