VCuxOy Thin Film by Magnetron Sputtering as Cathode Material for Thin Film Lithium-Ion Microbatteries

Article Preview

Abstract:

A Cu doped V2O5 film for lithium-ion batteries is prepared by magnetron sputtered using a vanadium target. Coppers are doped in varying proportions to investigate the effect of doping on the electrochemical properties. In comparison, the surface of doped samples is smooth and uniform. And the results of electrochemical tests indicate that the proper doped films (V: Cu=8: 1 by area) exhibit better cycle performance, wider voltage plateaus and higher capacity than other samples.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

1145-1149

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.B. Lee, L.W. Lin, J Microelectromech S, 12 (2003) 840-847.

Google Scholar

[2] J.P. Carmo, J.F. Ribeiro, M.F. Silva, L.M. Goncalves, J.H. Correia, J Micromech Microeng, 20 (2010).

Google Scholar

[3] L. Wang, S. Kitamura, K. Obata, S. Tanase, T. Sakai, J Power Sources, 141 (2005) 286-292.

Google Scholar

[4] A. Benayad, H. Martinez, A. Gies, B. Pecquenard, A. Levasseur, D. Gonbeau, J. Phys. Chem. Solids, 67 (2006) 1320-1324.

DOI: 10.1016/j.jpcs.2006.01.089

Google Scholar

[5] S. Chung, N. Chmilenko, A.Y. Borovykov, S. Lee, J Power Sources, 84 (1999) 6-11.

Google Scholar

[6] S.Q. Wang, S.R. Li, Y. Sun, X.Y. Feng, C.H. Chen, Energ Environ Sci, 4 (2011) 2854-2857.

Google Scholar

[7] V. Mohan, B. Hu, W. Qiu, W. Chen, J Appl Electrochem, 39 (2009) 2001-(2006).

Google Scholar

[8] R. Ostermann, D. Li, Y. Yin, J.T. McCann, Y. Xia, Nano Lett, 6 (2006) 1297-1302.

Google Scholar

[9] D. Yu, C. Chen, S. Xie, Y. Liu, K. Park, X. Zhou, Q. Zhang, J. Li, G. Cao, Energ Environ Sci, 4 (2011) 858-861.

Google Scholar

[10] M. Koltypin, V. Pol, A. Gedanken, D. Aurbach, J Electrochem Soc, 154 (2007) A605-A613.

Google Scholar

[11] T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, D. Golberg, Adv Mater, 22 (2010) 2547-2552.

DOI: 10.1002/adma.200903586

Google Scholar

[12] Y. Wei, C. -W. Ryu, K. -B. Kim, J Power Sources, 165 (2007) 386-392.

Google Scholar

[13] F. Coustier, J. Hill, B.B. Owens, S. Passerini, W.H. Smyrl, J Electrochem Soc, 146 (1999) 1355-1360.

DOI: 10.1149/1.1391770

Google Scholar

[14] M. Sananes-Schulz, F.B. Abdelouahab, G. Hutchings, J. Volta, Journal of Catalysis, 163 (1996) 346-353.

Google Scholar

[15] P. Rozier, J.M. Savariault, J. Galy, Solid State Ionics, 98 (1997) 133-144.

DOI: 10.1016/s0167-2738(97)00112-4

Google Scholar

[16] C. Delmas, H. Cognac-Auradou, J. Cocciantelli, M. Menetrier, J. Doumerc, Solid State Ionics, 69 (1994) 257-264.

DOI: 10.1016/0167-2738(94)90414-6

Google Scholar

[17] H. -K. Kim, T. -Y. Seong, Y.S. Yoon, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21 (2003) 754-759.

Google Scholar

[18] J.G. Zhang, J.M. McGraw, J. Turner, D. Ginley, J Electrochem Soc, 144 (1997) 1630-1634.

Google Scholar

[19] L.T. Zhang, J. Song, M.Z. Cai, F.C. Xu, S.T. Wu, Q.F. Dong, Chem J Chinese U, 30 (2009) 971-975.

Google Scholar

[20] L.Z. Li Jing, Wu Suntao, Journal of Functional Materials, 36 (2005) 1301-1304.

Google Scholar