[1]
Deka R. C., Tajima N., Hirao K., Influence of isomorphous substitution on acidity of zeolites: ab initio and density functional studies, J. Mol. Struct-Theochem. 535 (2001) 31-38.
DOI: 10.1016/s0166-1280(00)00573-x
Google Scholar
[2]
Breck D., Skeels G. W., U.S. Patent 4, 503, 023. (1985).
Google Scholar
[3]
Tang Y., Xu J. S., Gao Z., Isomorphous substitution of metallic elements for zeolite Y in aqueous solution. Chem. J. Chinese. Universities. 11 (1990) 1317-1321. (In Chinese).
Google Scholar
[4]
Xu Z. L., Zhang Y. Z., Zheng L. B., The secondary synthesis of zeolites via framework substitution for aluminum Ⅰ preparation and characterization of zeolite Y containing Ga. J. Mol. Catal. (China). 6 (1992) 271-278. (In Chinese).
Google Scholar
[5]
Dwyer J., Karim K., The incorporation of heteroatoms into faujastic framework by secondary synthesis using aqueous fluoride complexes. J. Chem. Soc. Chem. Commun. 14 (1991) 905-906.
DOI: 10.1039/c39910000905
Google Scholar
[6]
Sergio L., González-Cortés, Comparing the hydrodesulfurization reaction of thiophene on γ-Al2O3 supported CoMo, NiMo and NiW sulfide catalysts, React. Kinet. Catal . Lett. 97 (2009) 131-139.
DOI: 10.1007/s11144-009-0008-2
Google Scholar
[7]
Luděk K., Miroslav Z., Zdeně¦k V., Deposition of NiO onto MoO3/γ-Al2O3 extrudates by slurry impregnation method. React. Kinet. Catal. Lett. 97 (2009) 307-313.
DOI: 10.1007/s11144-009-0031-3
Google Scholar
[8]
Ara CSHM, Development of highly active Co(Ni)Mo catalysts for the hydrodesulfurization of dibenzothiophene compounds. Catal. Surv. Asia. 14 (2010) 64-74.
DOI: 10.1007/s10563-010-9088-2
Google Scholar
[9]
Palcheva R. A., Spojakina KJ, Kaluza L, Effect of Co on HDS activity of alumina-supported heteropolymolybdate. Cata. l Lett. 137 (2010) 216-223.
DOI: 10.1007/s10562-010-0361-9
Google Scholar
[10]
Ge H., Li X. K., Qin Z. F., Liang F. X. and Wang J. G., Effects of carbon on the sulfidation and hydrodesulfurization of CoMo hydrating catalysts. Korean. J. Chem. Eng. 26(2009) 576-581.
DOI: 10.1007/s11814-009-0098-6
Google Scholar
[11]
Takashi F., Highly active HDS catalyst for producing ultra-low sulfur diesel fuels. Top. Catal. 52 (2009) 872-879.
DOI: 10.1007/s11244-009-9228-y
Google Scholar
[12]
Lilia Y. L., Tatiana EK, SBA-15 modified with Al, Ti, or Zr as supports for highly active NiW catalysts for HDS. J. Mate. r Sci. 44 (2009) 6617-6628.
DOI: 10.1007/s10853-009-3613-6
Google Scholar
[13]
Shen B. J., Li H. F. and Shen S. K., Tailoring alumina support with crystalline AlPO4-5 for enhancing hydrodesulfurization activity. Catal. Lett. 106 (2006) 55-60.
DOI: 10.1007/s10562-005-9190-7
Google Scholar
[14]
Masahiko A., Yui M., Kazuo T. and Masayuki S., Cobalt-containing smectite-like mesoporous material as a new type of catalyst for hydrodesulfurization of thiophene. Catal. Lett. 61 (1999) 83-87.
Google Scholar
[15]
Teh C. H., Hydrodesulfurization with RuS2 at low hydrogen pressures. Catal. Lett. 89 (2003) 21-25.
Google Scholar
[16]
Adeline N. R. and Roel P., Infuence of nitrogen-containing components on the hydrodesulfurization of 4, 6-dimethyldibenzothiophene over Pt, Pd, and Pt–Pd on alumina catalysts. Top. Catal. 46 (2007) 65-78.
DOI: 10.1007/s11244-007-0316-6
Google Scholar
[17]
Lu X., Luo L. T. and Chen X. S. Influence of Pd-Ce interaction and chlorine ion on hydrodesulfurization reaction: the Pd-CeO2/Al2O3 catalyst. React. Kinet. Catal. Lett. 94 (2008) 35-46.
DOI: 10.1007/s11144-008-5238-1
Google Scholar
[18]
Zdeněk V., Daniela G., Luděk K. and Miroslav Z., Effect of support on the synergy in HDS of thiophene and HDN of pyrindine over Mo sulfide catalysts promoted by Rh. React. Kinet. Catal. Lett. 83 (2004) 237-244.
DOI: 10.1023/b:reac.0000046082.27393.59
Google Scholar
[19]
José A. R., Ping L., Yoshiro T., Kenichi N., Francesc V. and Francesc I., Desulfurization reactions on surfaces of metal carbides: photoemission and density–functional studies. Top. Catal. 53 (2010) 393-402.
DOI: 10.1007/s11244-010-9452-5
Google Scholar
[20]
TANG K., HONG X., ZHAO Y. H., SONG L.J. and SUN Z. L. Adsorptive desulfurization on a heteroatoms Y zeolite prepared by secondary synthesis. Sci. China Chem. 1(2010) 281-286.
DOI: 10.1007/s11426-010-0037-8
Google Scholar
[21]
Dwyer J., Karim K., The incorporation of heteroatoms into faujastic framework by secondary synthesis using aqueous fluoride complexes. J. Chem. Soc. Chem. Commun. 14 (1991) 905-906.
DOI: 10.1039/c39910000905
Google Scholar
[22]
David R., Khalid K. and John D. Gallium zeolites. U.S. Patent 5, 238, 675. (1993).
Google Scholar
[23]
Tang K., Song L. J., Duan L. H., Li X. Q. , Gui J. Z. and Sun Z. L., Deep desulfurization by selective adsorption on a heteroatoms zeolite prepared by secondary synthesis. Fuel Process. Technol. 89 (2008) 1-6.
DOI: 10.1016/j.fuproc.2007.06.002
Google Scholar
[24]
Xu R. R., Pang W. Q., Chemistry-zeolites and porous materials. Science Press, Bei Jing, 2004. (In Chinese).
Google Scholar
[25]
Xiao F. S., Zheng S., Sun J. M., Yu R. B., Qiu S. L. and Xu R. R., Dispersion of inorganic salts into zeolites and their pore modification. J. Catal. 176 (1998) 474-487.
DOI: 10.1006/jcat.1998.2054
Google Scholar
[26]
Xiang L., Wang A. J., Wang Y., Chen Y. Y., Liu Y. H. and Hu Y. K., Hydrodesulfurization of dibenzothiophene over Ni-Mo sulfides supported by proton-exchanged siliceous MCM-41. Catal. Lett. 84 (2002) 107-113.
DOI: 10.1006/jcat.2002.3674
Google Scholar