[1]
A. Kundu, J.H. Jang, J.H. Gil, C.R. Jung, H.R. Lee, S.H. Kim, B. Ku, Y.S. Oh, Micro-fuel cells - Current development and applications, J. Power Sources 170 (2007) 67-78.
DOI: 10.1016/j.jpowsour.2007.03.066
Google Scholar
[2]
T. Schultz, U. Krewer, T. Vidakovic, M. Pfafferodt, M. Christov, K. Sundmacher, Systematic analysis of the direct methanol fuel cell, J. Appl. Electrochem. 37 (2007) 111-119.
DOI: 10.1007/s10800-006-9209-9
Google Scholar
[3]
Y.L. He, Z. Miao, T.S. Zhao, W.W. Yang, Numerical study of the effect of the GDL structure on water crossover in a direct methanol fuel cell, Int. J. Hydrogen Energ. 37 (2012) 4422-4438.
DOI: 10.1016/j.ijhydene.2011.11.102
Google Scholar
[4]
F.Q. Liu, G.Q. Lu, C.Y. Wang, Low crossover of methanol and water through thin membranes in direct methanol fuel cells, J. Electrochem. Soc. 153 (2006) 543-553.
DOI: 10.1149/1.2161636
Google Scholar
[5]
K. Kang, G. Lee, G. Gwak, Development of an advanced MEA to use high-concentration methanol fuel in a direct methanol fuel cell system, Int. J. Hydrogen Energ. 37 (2012) 6285-6291.
DOI: 10.1016/j.ijhydene.2011.06.114
Google Scholar
[6]
A. Yamauchi, T. Ito, T. Yamaguchi, Low methanol crossover and high performance of DMFCs achieved with a pore-filling polymer electrolyte, J. Power Sources 174 (2007) 170-175.
DOI: 10.1016/j.jpowsour.2007.08.081
Google Scholar
[7]
W.W. Yang, T.S. Zhao, Numerical Investigations of Effect of Membrane Electrode Assembly Structure on Water Crossover in a Liquid-feed Direct Methanol Fuel Cell, J. Power Sources 188 (2009) 433-446.
DOI: 10.1016/j.jpowsour.2008.11.139
Google Scholar
[8]
C. Xu, T.S. Zhao, A new flow field design for polymer electrolyte-based fuel cells, Electrochem. Commun. 9 (2007) 497-503.
Google Scholar
[9]
C. Xu, T.S. Zhao, In situ measurements of water crossover through the membrane for direct methanol fuel cells, J. Power Sources 168 (2007) 143-153.
DOI: 10.1016/j.jpowsour.2007.03.023
Google Scholar
[10]
F.Q. Liu, C.Y. Wang, Water and methanol crossover in direct methanol fuel cells - Effect of anode diffusion media, Electrochim. Acta 53 (2008) 5517-5522.
DOI: 10.1016/j.electacta.2008.03.011
Google Scholar
[11]
S. Motupally, A.J. Becker, J.W. Weidner, Diffusion of water in Nafion 115 membranes, J. Electrochem. Soc. 147 (2000) 3171-3177.
DOI: 10.1149/1.1393879
Google Scholar
[12]
Y.C. Park, P. Chippar, S.K. Kim, S. Lim, D.H. Jung, H. Ju, Effects of serpentine flow-field designs with different channel and rib widths on the performance of a direct methanol fuel cell, J. Power Sources 205 (2012) 32-47.
DOI: 10.1016/j.jpowsour.2011.12.055
Google Scholar
[13]
C. Xu, T.S. Zhao, W.W. Yang, Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells. J. Power Sources 178 (2008) 291-308.
DOI: 10.1016/j.jpowsour.2007.11.098
Google Scholar
[14]
C.H. Chen, T.K. Yeh, A mathematical model for simulating methanol permeation and the mixed potential effect in a direct methanol fuel cell, J. Power Sources 160 (2006) 1131-1141.
DOI: 10.1016/j.jpowsour.2006.03.005
Google Scholar