Electrohydrodynamic Atomization Deposition of Fuel Cell Catalyst-Coated Membrane with Structure and Material Gradient Variation

Article Preview

Abstract:

A catalyst-coated membrane (CCM) with structure and material gradient variation was deposited layer-by-layer (LbL) using electrohydrodynamic atomization (EHDA) deposition. This CCM contained 7 layers which is C cathode diffusion layer, Pt/C-C cathode transition layer, Pt/C cathode catalyst layer, Nafion membrane, Pt-Ru/C anode catalyst layer, Pt-Ru/C-C anode transition layer and C anode diffusion layer. The cathode and anode side were named as cathode and anode catalyst-diffusion layers, respectively. It was observed that the cathode and anode catalyst-diffusion layers presented the dendritic structure. Within the cathode and anode catalyst-diffusion layers, the Pt/C-C and Pt-Ru/C-C transition layer was more porous compared to the C layer, Pt/C layer and Pt-Ru/C layer. It was also shown that the EHDA LbL deposited CCM still presented close-packed structure after life test.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

1156-1162

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Ren, P. Zelenay, S. Thomas, J. Davey and S. Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory, J. Power Sources 86 (2000) 111-116.

DOI: 10.1016/s0378-7753(99)00407-3

Google Scholar

[2] A. Faghri and Z. Guo, An innovative passive DMFC technology, Appl. Therm. Eng. 28 (2008) 1614-1622.

Google Scholar

[3] M. Prasanna, H.Y. Ha, E.A. Cho, S.A. Hong and I.H. Oh, Investigation of oxygen gain in polymer electrolyte membrane fuel cells, J. Power Sources 137 (2004) 1-8.

DOI: 10.1016/j.jpowsour.2004.05.034

Google Scholar

[4] M.V. Williams, E. Begg, L. Bonville, H.R. Kunz and J.M. Fentona, Characterization of Gas Diffusion Layers for PEMFC, J. Electrochem. Soc. 151 (2004) A1173-A1180.

DOI: 10.1149/1.1764779

Google Scholar

[5] M. Schuster, T. Rager, A. Noda, K.D. Kreuer and J. Maier, About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds, Fuel Cells 5 (2005).

DOI: 10.1002/fuce.200400059

Google Scholar

[6] M.C. Tucker, M. Odgaard, P.B. Lund, S. Yde-Andersen and J.O. Thomas, The Pore Structure of Direct Methanol Fuel Cell Electrodes, J. Electrochem. Soc. 152 (2005) A1844-A1850.

DOI: 10.1149/1.1993488

Google Scholar

[7] Q.P. Wang, D.T. Song, T. Navessin, S. Holdcroft and Z.S. Liu, A mathematical model and optimization of the cathode catalyst layer structure in PEM fuel cells, Electrochim. Acta 50 (2004) 725-730.

DOI: 10.1016/j.electacta.2004.01.113

Google Scholar

[8] L. Xiong, and A. Manthiram, High performance membrane-electrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cells, Electrochim. Acta 50 (2005) 3200-3204.

DOI: 10.1016/j.electacta.2004.11.049

Google Scholar

[9] T. Suzuki, Y. Tabuchi, S. Tsushima and S. Hirai, Measurement of water content distribution in catalyst coated membranes under water permeation conditions by magnetic resonance imaging, Int. J. Hydrogen Energy 36 (2011) 5479-5486.

DOI: 10.1016/j.ijhydene.2011.01.162

Google Scholar

[10] K.H. Kim, K.Y. Lee, S.Y. Lee, E. Cho, T.H. Lim, H.J. Kim, S.P. Yoon, S.H. Kim, T.W. Lim and J.H. Jang, The effects of relative humidity on the performances of PEMFC MEAs with various Nafion® ionomer contents, Int. J. Hydrogen Energy 35 (2005).

DOI: 10.1016/j.ijhydene.2010.04.082

Google Scholar

[11] D. You, Y. Lee, H. Cho, J.H. Kim and C. Pak, High performance membrane electrode assemblies by optimization of coating process and catalyst layer structure in direct methanol fuel cells, Int. J. Hydrogen Energy 36 (2011) 5096-5103.

DOI: 10.1016/j.ijhydene.2011.01.068

Google Scholar

[12] J.R. Yu, T. Matsuura, Y. Yoshikawa, M.N. Islam and M. Hori, Lifetime behavior of a PEM fuel cell with low humidification of feed stream, Phys. Chem. Chem. Phys. 7 (2005) 373-378.

DOI: 10.1039/b412600a

Google Scholar

[13] A. Jaworek and A. Krupa, Classification of the modes of end spraying, J. Aerosol Sci. 30 (1999) 873-893.

DOI: 10.1016/s0021-8502(98)00787-3

Google Scholar

[14] B.Y. Tay, J.R.G. Evans and M.J. Edirisinghe, Electrohyohy-drodynamic Atomization of a Concentrated Nano-Suspension, Int. Mater. Rev. 48 (2003) 341-370.

Google Scholar

[15] D. Wang, L. Wang, J.S. Liang and C. Liu, Formation of integrated catalyst coated membrane using EHDA Layer-by-Layer deposition for direct methanol fuel cells, J. Power Source 224 (2012) 202-210.

DOI: 10.1016/j.jpowsour.2012.09.092

Google Scholar

[16] D. Wang, L. Wang, J.S. Liang and C. Liu, Instrument for layer-by-layer deposition of catalyst layers directly on proton exchange membrane for direct methanol fuel cell, Rev. Sci. Instrum. 83 (2012) 095005-095005-5.

DOI: 10.1063/1.4750976

Google Scholar

[17] D. Wang and R.A. Dorey, Formation of PZT Thick Film Single Elements Using EHDA Deposition, Mater. Sci. Forum 628-629 (2009) 405–410.

DOI: 10.4028/www.scientific.net/msf.628-629.405

Google Scholar

[18] L.H. Jiang, G.Q. Sun, S.L. Wang, G.X. Wang, Q. Xin, Z.H. Zhou and B. Zhou, Electrode catalysts behavior during direct ethanol fuel cell life-time test, Electrochem. Commun. 7 (2005) 663-668.

DOI: 10.1016/j.elecom.2005.04.021

Google Scholar

[19] W.M. Chen, Sun G.Q., J.S. Guo, X.S. Zhao, S.Y. Yan, J. Tian, S.H. Tang, Z.H. Zhou and Q. Xin, Test on the degradation of direct methanol fuel cell, Electrochim. Acta 51 (2006) 2391-2399.

DOI: 10.1016/j.electacta.2005.07.016

Google Scholar

[20] J.G. Liu, Z.H. Zhou, X.S. Zhao, Q. Xin, G.Q. Sun and B.L. Yi, Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test, Phys. Chem. Chem. Phys. 6 (2004) 134-137.

DOI: 10.1039/b313478d

Google Scholar

[21] D. Wang, H. Duan, J. Liang and C. Liu, Formation of porous and dense Pt/C catalyst films using electrohydrodynamic atomisation deposition, Micro Nano Lett. 7 (2012) 235-239.

DOI: 10.1049/mnl.2012.0018

Google Scholar