[1]
X. Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory, J Power Sources. 86 (2000) 111-116.
DOI: 10.1016/s0378-7753(99)00407-3
Google Scholar
[2]
A. Faghri, Z. Guo, An innovative passive DMFC technology, Appl Therm Eng. 28 (2008) 1614-1622.
Google Scholar
[3]
M. Carmoa, V.A. Paganina, J.M. Rosolenb, E.R. Gonzaleza, Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes, J Power Sources. 142 (2005) 169-176.
DOI: 10.1016/j.jpowsour.2004.10.023
Google Scholar
[4]
X.M. Ren, M.S. Wilson, S. Gottesfeld, High Performance Direct Methanol Polymer Electrolyte Fuel Cells, J Electrochem Soc. 143 (1996) 12–15.
DOI: 10.1149/1.1836375
Google Scholar
[5]
P.L. Antonucci, A.S. Aricò, P. Cretì, Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation, Solid State Ionics. 125 (1999) 431–437.
DOI: 10.1016/s0167-2738(99)00206-4
Google Scholar
[6]
Z. Florjanczyk, E. Wielgus-Barry, Z. Poltarzewski, Radiation-modified Nafion membranes for methanol fuel cells, Solid State Ionics. 145 (2001) 119–126.
DOI: 10.1016/s0167-2738(01)00921-3
Google Scholar
[7]
C. Yang, S. Srinivasan, A.S. Aricò, Composition Nafion/zirconium phosphate membranes fordirect methanol fuel cell opration at high temperature, Electrochem Solid St. 4 (2001) 31–34.
DOI: 10.1149/1.1353157
Google Scholar
[8]
S.K. Kamarudin, N. Hashim, Materials, morphologies and structures of MEAs in DMFCs, Renew Sust Energy Rev. 16 (2012) 2494–2515.
DOI: 10.1016/j.rser.2012.01.073
Google Scholar
[9]
Q. Mao, G. Sun, S. Wang, Comparative studies of configurations and preparation methods for direct methanol fuel cell electrodes, Electrochim Acta. 52 (2007) 6763–6770.
DOI: 10.1016/j.electacta.2007.04.120
Google Scholar
[10]
L. Xiong, A. Manthiram, High performance membrane electrode assemblies withultra-low Pt loading for proton exchange membrane fuelcells, Electrochim Acta. 50 (2005) 3200–3204.
DOI: 10.1016/j.electacta.2004.11.049
Google Scholar
[11]
T. Suzuki, Y. Tabuchi, S. Tsushima, Measurement of water content distribution in catalyst coated membranes under water permeation conditions by magnetic resonance imaging, Int J Hydrogen Energy. 36 (2011) 5479–5486.
DOI: 10.1016/j.ijhydene.2011.01.162
Google Scholar
[12]
A. Jaworek, A.T. Sobczyk, Electrospraying route to nanotechnology: An overview, J Electrostat. 66 (2008) 197–219.
DOI: 10.1016/j.elstat.2007.10.001
Google Scholar
[13]
F. Bortolani, R.A. Dorey, Synthesis of spherical lead zirconate titanate (PZT) nanoparticles by electrohydrodynamic atomization, Adv. Appl. Ceram. 108 (2009) 332-337.
DOI: 10.1179/174367608x378578
Google Scholar
[14]
N.M. Muhammad, A.M. Naeem, N. Duraisamy, Fabrication of high quality zinc-oxide layers through electrohydrodynamic atomization, Thin Solid Films. 520 (2012) 1751–1756.
DOI: 10.1016/j.tsf.2011.08.065
Google Scholar
[15]
M. Li, K. Scottb, A polytetrafluoroethylene/quaternized polysulfone membrane for high temperature polymer electrolyte membrane fuel cells, J Power Sources. 196 (2011) 1894–1898.
DOI: 10.1016/j.jpowsour.2010.10.027
Google Scholar
[16]
D. Wang, L. Wang, J. Liang, Formation of an integrated catalyst-coated membrane using electrohydrodynamic atomization Layer-by-Layer deposition for direct methanol fuel cells, J Power Sources. 224 (2013) 202–210.
DOI: 10.1016/j.jpowsour.2012.09.092
Google Scholar
[17]
D. Wang, H. Duan, J. Liang, Formation of porous and dense Pt/C catalyst films using electrohydrodynamic atomisation deposition, Micro Nano Lett. 7 (2012) 235–239.
DOI: 10.1049/mnl.2012.0018
Google Scholar
[18]
S.F. Lu, R.J. Xiu, X. Xu, D.W. Liang, H.N. Wang, Y. Xiang, Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells, J Membrane Sci. 464 (2014).
DOI: 10.1016/j.memsci.2014.03.053
Google Scholar