Formation of Membrane Electrode Assembly for High Temperature Methanol Fuel Cells

Article Preview

Abstract:

In this work, a quaternized polysulfone/PTFE/H3PO4 composite membrane was prepared and used to a high temperature sustainable proton exchange membrane (HTPEM). This HTPEM was prepared based on a porous PTFE membrane, which can sustainable for 200 °C. Pt/C nano-suspension was prepared and deposited layer-by-layer on the gas diffusion layer (GDL) using electrohydrodynamic atomization (EHDA) deposition technique for the formation of cathode and anode catalyst layers (CLs). The CLs presented well packed and porous features. This EHDA deposited cathode and anode CLs, GDL and HTPEM were assembled to a membrane electrode assembly (MEA) and high temperature methanol fuel cell (HTMFC). The results showed that low concentration and high flow rate of methanol aqueous solution led to the loss of phosphoric acid on HTPEM, which resulted in the decline of the HTPEM. When the concentration and the flow rate of the methanol aqueous solution was increased and reduced, respectively, the cell can work properly at a temperature of 170 °C.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

1175-1180

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory, J Power Sources. 86 (2000) 111-116.

DOI: 10.1016/s0378-7753(99)00407-3

Google Scholar

[2] A. Faghri, Z. Guo, An innovative passive DMFC technology, Appl Therm Eng. 28 (2008) 1614-1622.

Google Scholar

[3] M. Carmoa, V.A. Paganina, J.M. Rosolenb, E.R. Gonzaleza, Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes, J Power Sources. 142 (2005) 169-176.

DOI: 10.1016/j.jpowsour.2004.10.023

Google Scholar

[4] X.M. Ren, M.S. Wilson, S. Gottesfeld, High Performance Direct Methanol Polymer Electrolyte Fuel Cells, J Electrochem Soc. 143 (1996) 12–15.

DOI: 10.1149/1.1836375

Google Scholar

[5] P.L. Antonucci, A.S. Aricò, P. Cretì, Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation, Solid State Ionics. 125 (1999) 431–437.

DOI: 10.1016/s0167-2738(99)00206-4

Google Scholar

[6] Z. Florjanczyk, E. Wielgus-Barry, Z. Poltarzewski, Radiation-modified Nafion membranes for methanol fuel cells, Solid State Ionics. 145 (2001) 119–126.

DOI: 10.1016/s0167-2738(01)00921-3

Google Scholar

[7] C. Yang, S. Srinivasan, A.S. Aricò, Composition Nafion/zirconium phosphate membranes fordirect methanol fuel cell opration at high temperature, Electrochem Solid St. 4 (2001) 31–34.

DOI: 10.1149/1.1353157

Google Scholar

[8] S.K. Kamarudin, N. Hashim, Materials, morphologies and structures of MEAs in DMFCs, Renew Sust Energy Rev. 16 (2012) 2494–2515.

DOI: 10.1016/j.rser.2012.01.073

Google Scholar

[9] Q. Mao, G. Sun, S. Wang, Comparative studies of configurations and preparation methods for direct methanol fuel cell electrodes, Electrochim Acta. 52 (2007) 6763–6770.

DOI: 10.1016/j.electacta.2007.04.120

Google Scholar

[10] L. Xiong, A. Manthiram, High performance membrane electrode assemblies withultra-low Pt loading for proton exchange membrane fuelcells, Electrochim Acta. 50 (2005) 3200–3204.

DOI: 10.1016/j.electacta.2004.11.049

Google Scholar

[11] T. Suzuki, Y. Tabuchi, S. Tsushima, Measurement of water content distribution in catalyst coated membranes under water permeation conditions by magnetic resonance imaging, Int J Hydrogen Energy. 36 (2011) 5479–5486.

DOI: 10.1016/j.ijhydene.2011.01.162

Google Scholar

[12] A. Jaworek, A.T. Sobczyk, Electrospraying route to nanotechnology: An overview, J Electrostat. 66 (2008) 197–219.

DOI: 10.1016/j.elstat.2007.10.001

Google Scholar

[13] F. Bortolani, R.A. Dorey, Synthesis of spherical lead zirconate titanate (PZT) nanoparticles by electrohydrodynamic atomization, Adv. Appl. Ceram. 108 (2009) 332-337.

DOI: 10.1179/174367608x378578

Google Scholar

[14] N.M. Muhammad, A.M. Naeem, N. Duraisamy, Fabrication of high quality zinc-oxide layers through electrohydrodynamic atomization, Thin Solid Films. 520 (2012) 1751–1756.

DOI: 10.1016/j.tsf.2011.08.065

Google Scholar

[15] M. Li, K. Scottb, A polytetrafluoroethylene/quaternized polysulfone membrane for high temperature polymer electrolyte membrane fuel cells, J Power Sources. 196 (2011) 1894–1898.

DOI: 10.1016/j.jpowsour.2010.10.027

Google Scholar

[16] D. Wang, L. Wang, J. Liang, Formation of an integrated catalyst-coated membrane using electrohydrodynamic atomization Layer-by-Layer deposition for direct methanol fuel cells, J Power Sources. 224 (2013) 202–210.

DOI: 10.1016/j.jpowsour.2012.09.092

Google Scholar

[17] D. Wang, H. Duan, J. Liang, Formation of porous and dense Pt/C catalyst films using electrohydrodynamic atomisation deposition, Micro Nano Lett. 7 (2012) 235–239.

DOI: 10.1049/mnl.2012.0018

Google Scholar

[18] S.F. Lu, R.J. Xiu, X. Xu, D.W. Liang, H.N. Wang, Y. Xiang, Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells, J Membrane Sci. 464 (2014).

DOI: 10.1016/j.memsci.2014.03.053

Google Scholar