Electrospun SnO2-Graphene Composite Nanofibers as High Performance Anode for Lithium Ion Batteries

Article Preview

Abstract:

A promising anode material for lithium ion batteries is reported in this paper. It is one-dimensional SnO2−graphene composite nanofibers (SnO2−G nanofibers) fabricated by using electrospinning technique. In the study, X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to characterize its structural and morphological properties. Samples with different ratio of SnO2 to graphene (wt%) are prepared to investigate its electrochemical performance. Galvanostatic charge/discharge tests reveals that Li-insertion/extraction is carried out through a two-phase reaction mechanism that is supported by galvanostatic charge−discharge profiles. It is found that the optimal proportion of SnO2 to graphene is 8:1 (wt%) for the electrospun composite materials. Furthermore, micro thin film batteries have been fabricated and tested. The results show that initial discharge capacity is 301.86 mA h g−1 at current density of 50 μA g−1, and battery can retain 63.3% of reversible capacity after 300 cycles, which is 5 times higher than bare SnO2.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

1207-1213

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.W. Zhang, L.W. Ji, O. Toprakci, Y.Z. Liang, M. Alcoutlabi, Polymer Reviews, 51 (2011) 239-264.

Google Scholar

[2] F. Han, W.C. Li, M.R. Li, A.H. Lu, J. Mater. Chem., 22 (2012) 9645-9651.

Google Scholar

[3] X.W. Guo, X.P. Fang, Y. Sun, L.Y. Shen, Z.X. Wang, L.Q. Chen, Journal of Power Sources, 226 (2013) 75-81.

Google Scholar

[4] Y. Wang, J.Y. Lee, H.C. Zeng, Chem. Mat., 17 (2005) 3899-3903.

Google Scholar

[5] D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J.C. Jumas, J.M. Tarascon, J. Mater. Chem., 17 (2007) 3759-3772.

Google Scholar

[6] S.J. Ding, J.S. Chen, G.G. Qi, X.N. Duan, Z.Y. Wang, E.P. Giannelis, L.A. Archer, X.W. Lou, Journal of the American Chemical Society, 133 (2011) 21-23.

Google Scholar

[7] S.J. Ding, Z.Y. Wang, S. Madhavi, X.W. Lou, J. Mater. Chem., 21 (2011) 13860-13864.

Google Scholar

[8] M. Dirican, M. Yanilmaz, K. Fu, Y. Lu, H. Kizil, X.W. Zhang, Journal of Power Sources, 264 (2014) 240-247.

DOI: 10.1016/j.jpowsour.2014.04.102

Google Scholar

[9] J. Liu, W. Li, A. Manthiram, Chemical Communications, 46 (2010) 1437-1439.

Google Scholar

[10] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[11] M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Nano Lett., 8 (2008) 3498-3502.

Google Scholar

[12] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun., 146 (2008) 351-355.

DOI: 10.1016/j.ssc.2008.02.024

Google Scholar

[13] W.B. Yue, Z.Z. Lin, S.H. Jiang, X.J. Yang, J. Mater. Chem., 22 (2012) 16318-16323.

Google Scholar

[14] S.J. Ding, D.Y. Luan, F.Y.C. Boey, J.S. Chen, X.W. Lou, Chemical Communications, 47 (2011) 7155-7157.

Google Scholar

[15] S.M. Paek, E. Yoo, I. Honma, Nano Lett., 9 (2009) 72-75.

Google Scholar

[16] S. Li, Y.Z. Wang, C. Lai, J.X. Qiu, M. Ling, W. Martens, H.J. Zhao, S.Q. Zhang, Journal of Materials Chemistry A, 2 (2014) 10211-10217.

Google Scholar

[17] D. Li, Y.N. Xia, Adv. Mater., 16 (2004) 1151-1170.

Google Scholar

[18] D.Y. Liu, X.W. Yuan, D. Bhattacharyya, J. Mater. Sci., 47 (2012) 3159-3165.

Google Scholar

[19] T.P. Mthethwa, M.J. Moloto, A. De Vries, K.P. Matabola, Mater. Res. Bull., 46 (2011) 569-575.

Google Scholar

[20] Z. Dong, S.J. Kennedy, Y. Wu, Journal of Power Sources, 196 (2011) 4886-4904.

Google Scholar

[21] X. Zhang, P. Suresh Kumar, V. Aravindan, H.H. Liu, J. Sundaramurthy, S.G. Mhaisalkar, H.M. Duong, S. Ramakrishna, S. Madhavi, The Journal of Physical Chemistry C, 116 (2012) 14780-14788.

DOI: 10.1021/jp302574g

Google Scholar

[22] A.K. Geim, K.S. Novoselov, Nature Materials, 6 (2007) 183-191.

Google Scholar

[23] S.J. Han, B.C. Jang, T. Kim, S.M. Oh, T. Hyeon, Advanced Functional Materials, 15 (2005) 1845-1850.

Google Scholar

[24] M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Angewandte Chemie, 46 (2007) 750-753.

Google Scholar