Corrosion Behavior of SAMs Modified Silver-Coated 316LSS as PEMFC Bipolar Plates

Article Preview

Abstract:

In order to improve the anti-corrosion characteristic of Ag-coated 316SS bipolar plates in PEMFC environment, self-assembled monolayer (SAM) was prepared on its surface by chemical methods. The electrochemical characteristic of modified bipolar plate was also investigated. The results indicated that the SAM was composed of dodecyl thioalcohol. After forming SAM, the bipolar plate’s contact angle increased from 58° to 102°. In addition, its double layer capacitance (Cd) was decreased and charge transfer resistance was increased. The homogeneous SAM, which acted as a protective barrier, inhibited the corrosive ion from corroding. SAM may provide significant protection against corrosion in PEMFC environment.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

1233-1243

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Rajalakshmi, S. Pandian, K.S. Dhathathreyan, Vibration tests on a PEM fuel cell stack usable in transportationapplication, Int J Hydrogen Energ 34 (2009) 3833-3837.

DOI: 10.1016/j.ijhydene.2009.03.002

Google Scholar

[2] S. Barrett, The European hydrogen and fuel cell Strategic Research Agenda and Deployment Strategy, Fuel Cells Bulletin 2005 (2005) 12-19.

DOI: 10.1016/s1464-2859(05)70631-3

Google Scholar

[3] K. Jayakumar, S. Pandiyan, N. Rajalakshmi, K.S. Dhathathreyan, Cost-benefit analysis of commercial bipolar plates for PEMFC's, J Power Sources 161 (2006) 454-459.

DOI: 10.1016/j.jpowsour.2006.04.128

Google Scholar

[4] S.R. Dhakate, R.B. Mathur, B.K. Kakati, T.L. Dhami, Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell, Int J Hydrogen Energ 32 (2007) 4537-4543.

DOI: 10.1016/j.ijhydene.2007.02.017

Google Scholar

[5] C. Du, P.W. Ming, M. Hou, J. Fu, Q. Shen, D. Liang, Y.F. Fu, X.K. Luo, Z.G. Shao, B.L. Yi, Preparation and properties of thin epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells, J Power Sources 195 (2010).

DOI: 10.1016/j.jpowsour.2009.08.033

Google Scholar

[6] X.Q. Yan, M. Hou, H.F. Zhang, F.N. Jing, P.W. Ming, B.L. Yi, Performance of PEMFC stack using expanded graphite bipolar plates, J Power Sources 160 (2006) 252-257.

DOI: 10.1016/j.jpowsour.2006.01.022

Google Scholar

[7] C.H. Shen, M. Pan, Z.F. Hua, R.Z. Yuan, Aluminate cement/graphite conductive composite bipolar plate for proton exchange membrane fuel cells, J Power Sources 166 (2007) 419-423.

DOI: 10.1016/j.jpowsour.2007.01.082

Google Scholar

[8] N.F. Wan, C. Wang, Z.Q. Mao, Titanium substrate based micro-PEMFC operating under ambient conditions, Electrochem Commun 9 (2007) 511-516.

DOI: 10.1016/j.elecom.2006.10.025

Google Scholar

[9] S.H. Wang, J. Peng, W.B. Lui, J.S. Zhang, Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells, J Power Sources 162 (2006) 486-491.

DOI: 10.1016/j.jpowsour.2006.06.084

Google Scholar

[10] S.H. Wang, J. Peng, W.B. Lui, Surface modification and development of titanium bipolar plates for PEM fuel cells, J Power Sources 160 (2006) 485-489.

DOI: 10.1016/j.jpowsour.2006.01.020

Google Scholar

[11] H.L. Wang, J.A. Turner, Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells, J Power Sources 128 (2004) 193-200.

DOI: 10.1016/j.jpowsour.2003.09.075

Google Scholar

[12] E. Fleury, J. Jayaraj, Y.C. Kim, H.K. Seok, K.Y. Kim, K.B. Kim, Fe-based amorphous alloys as bipolar plates for PEM fuel cell, J Power Sources 159 (2006) 34-37.

DOI: 10.1016/j.jpowsour.2006.04.119

Google Scholar

[13] M.P. Brady, H. Wang, B. Yang, J.A. Turner, M. Bordignon, R. Molins, M.A. Elhamid, L. Lipp, L.R. Walker, Growth of Cr-Nitrides on commercial Ni-Cr and Fe-Cr base alloys to protect PEMFC bipolar plates, Int J Hydrogen Energ 32 (2007) 3778-3788.

DOI: 10.1016/j.ijhydene.2006.08.044

Google Scholar

[14] R.J. Tian, J.C. Sun, Performance of a high Cr and Ni austenitic stainless steel bipolar plates in proton exchange membrane fuel cell working environments, J Power Sources 194 (2009) 981-984.

DOI: 10.1016/j.jpowsour.2009.06.027

Google Scholar

[15] M.P. Brady, K. Weisbrod, I. Paulauskas, R.A. Buchanan, K.L. More, H. Wang, M. Wilson, F. Garzon, L.R. Walker, Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates, Scripta Mater 50 (2004).

DOI: 10.1016/j.scriptamat.2003.12.028

Google Scholar

[16] D.P. Davies, P.L. Adcock, M. Turpin, S.J. Rowen, Stainless steel as a bipolar plate material for solid polymer fuel cells, J Power Sources 86 (2000) 237-242.

DOI: 10.1016/s0378-7753(99)00524-8

Google Scholar

[17] M.P. Brady, K. Weisbrod, C. Zawodzinski, I. Paulauskas, R.A. Buchanan, L.R. Walker, Assessment of thermal nitridation to protect metal bipolar plates in polymer electrolyte membrane fuel cells, Electrochemical and Solid-State Letters 5 (2002).

DOI: 10.1149/1.1509561

Google Scholar

[18] H. Wang, M.P. Brady, G. Teeter, J.A. Turner, Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates part 1: Model Ni-50Cr and austenitic 349 alloys, J Power Sources 138 (2004) 86-93.

DOI: 10.1016/j.jpowsour.2004.06.067

Google Scholar

[19] H. Wang, M.P. Brady, K.L. More, H.M. Meyer III, J.A. Turner, Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates Part 2: Beneficial modification of passive layer on AISI446, J Power Sources 138 (2004).

DOI: 10.1016/j.jpowsour.2004.06.064

Google Scholar

[20] R.J. Tian, J.C. Sun, L. Wang, Plasma-nitrided austenitic stainless steel 316L as bipolar plate for PEMFC, Int J Hydrogen Energ 31 (2006) 1874-1878.

DOI: 10.1016/j.ijhydene.2006.03.003

Google Scholar

[21] Y. Fu, M. Hou, G.Q. Lin, J.B. Hou, Z.G. Shao, B.L. Yi, Coated 316L stainless steel with CrxN film as bipolar plate for PEMFC prepared by pulsed bias arc ion plating, J Power Sources 176 (2008) 282-286.

DOI: 10.1016/j.jpowsour.2007.10.038

Google Scholar

[22] K.H. Cho, W.G. Lee, S.B. Lee, H. Jang, Corrosion resistance of chromized 316L stainless steel for PEMFC bipolar plates, J Power Sources 178 (2008) 671-676.

DOI: 10.1016/j.jpowsour.2007.09.031

Google Scholar

[23] R.J. Tian, J.C. Sun, J.L. Wang, Study on behavior of plasma nitrided 316L in PEMFC working conditions, Int J Hydrogen Energ 33 (2008) 7507-7512.

DOI: 10.1016/j.ijhydene.2008.09.080

Google Scholar

[24] N.D. Nam, J.H. Han, J.G. Kim, P.H. Tai, D.H. Yoon, Electrochemical properties of TiNCrN-coated bipolar plates in polymer electrolyte membrane fuel cell environment, Thin Solid Films 518 (2010) 6598-6603.

DOI: 10.1016/j.tsf.2010.03.046

Google Scholar

[25] R. Tian, Chromium nitride/Cr coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cell, In Press, Corrected Proof.

DOI: 10.1016/j.jpowsour.2010.08.028

Google Scholar

[26] B. Wu, Y. Fu, J. Xu, G.Q. Lin, M. Hou, Chromium nitride films on stainless steel as bipolar plate for proton exchange membrane fuel cell, J Power Sources 194 (2009) 976-980.

DOI: 10.1016/j.jpowsour.2009.06.029

Google Scholar

[27] K. Feng, Y. Shen, D.A. Liu, P.K. Chu, X. Cai, Ni-Cr Co-implanted 316L stainless steel as bipolar plate in polymer electrolyte membrane fuel cells, Int J Hydrogen Energ 35 (2010) 690-700.

DOI: 10.1016/j.ijhydene.2009.10.106

Google Scholar

[28] P.Y. Yi, L.F. Peng, L.Z. Feng, P. Gan, X.M. Lai, Performance of a proton exchange membrane fuel cell stack using conductive amorphous carbon-coated 304 stainless steel bipolar plates, J Power Sources 195 (2010) 7061-7066.

DOI: 10.1016/j.jpowsour.2010.05.019

Google Scholar

[29] K. Feng, Y. Shen, H.L. Sun, D.L. Liu, Q.Z. An, X. Cai, P.K. Chu, Conductive amorphous carbon-coated 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells, Int J Hydrogen Energ 34 (2009) 6771-6777.

DOI: 10.1016/j.ijhydene.2009.06.030

Google Scholar

[30] R.S.H.W. J. Wind, Metallic bipolar plates for PEM fuel cel, J Power Sources 105 (2002) 256-260.

DOI: 10.1016/s0378-7753(01)00950-8

Google Scholar

[31] J.P.A.W. Szu-Hua Wang, Surface modification and development of titanium bipolar plates for PEM fuel cells, J Power Sources 160 (2006) 485-489.

DOI: 10.1016/j.jpowsour.2006.01.020

Google Scholar

[32] W. Yoon, X.Y. Huang, P. Fazzino, K.L. Reifsnider, M.A. Akkaoui, Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells, J Power Sources 179 (2008) 265-273.

DOI: 10.1016/j.jpowsour.2007.12.034

Google Scholar

[33] C.E.D. Chidsey, D.N. Loiacono, Chemical functionality in self-assembled monolayers. Structural and electrochemical properties, Langmuir 6 (1990) 682-691.

DOI: 10.1021/la00093a026

Google Scholar

[34] F. Bensebaa, P. L'Ecuyer, K. Faid, C. Py, T.J. Tague, R.S. Jackson, Grazing angle infrared microspectroscopy of micropatterned self-assembled monolayers, Appl Surf Sci 243 (2005) 238-244.

DOI: 10.1016/j.apsusc.2004.09.084

Google Scholar

[35] R.G. Nuzzo, L.H. Dubois, B.R. Zegarski, E.M. Korenic, D.L. Allara, Studies of small molecule and polymer adsorption on organic surfaces, Proceedings of the ACS Division of Polymeric Materials: Science and Engineering, April 1, 1990 - April 1, 1990, vol. 62, Publ by ACS, Boston, MA, USA, 1990, p.852.

Google Scholar

[36] M. Evesque, M. Keddam, H. Takenouti, The formation of self-assembling membrane of hexadecane-thiol on silver to prevent the tarnishing, Electrochemical Methods in Corrosion Research, May 4, 2003 - May 9, 2004, vol. 49, Elsevier Ltd, Nieuwpoort, Belgium, 2004, pp.2937-2943.

DOI: 10.1016/j.electacta.2004.01.052

Google Scholar