Design and Comparison of Micro Electromagnetic Vibration Energy Harvesters

Article Preview

Abstract:

This paper presents two electromagnetic vibration energy harvesters based on micro-electro-mechanical (MEMS) technology. Two prototypes with different vibration structures were designed and fabricated. The energy harvester includes a permanent magnet attached on vibration structure (resonator) made by Si and a fixed wire-wound coil, with the total volume of 0.9 cm3. Two energy harvesters with different resonator are tested and compared. Experiments show that: in the same acceleration and a load resistance, the resonant frequency of prototype B is approximately 95% of prototype A; The peak-peak voltage and the maximum power of prototype B is 1.6 times and 2.7 times of prototype A respectively. The test results was analyzed simply and it indicated that the electromagnetic energy harvesting with the spring B has better performance; also proved that the potential ability of the non-linear spring could extend the frequency bandwidth and improve output voltage.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

1223-1232

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications, Meas. Sci. Technol. 17 (2006) R175–R195.

DOI: 10.1088/0957-0233/17/12/r01

Google Scholar

[2] S.P. Beeby, R.N. Torah, M.J. Tudor, P. Glynne-Jones, T. O'Donnell, C.R. Saha, S. Roy, Micro electromganetic generator for vibration energy harvesting, J. Micromech. Microeng. 17 (7) (2007) 1257–1265.

DOI: 10.1088/0960-1317/17/7/007

Google Scholar

[3] S. Roundy, P. K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Comput. Commun, vol. 26, pp.1130-1144, (2003).

DOI: 10.1016/s0140-3664(02)00248-7

Google Scholar

[4] S. Roundy, On the effectiveness of vibration-based energy harvesting, Journal of intelligent material systems and structures, vol. 16, pp.809-823, (2005).

DOI: 10.1177/1045389x05054042

Google Scholar

[5] C.T. Pan, Y.J. Chen et. al. Application of low temperature co-fire ceramics on in-plane micro-generator [J], Sensors and Actuators A, 2008 144: 144–153.

DOI: 10.1016/j.sna.2007.12.008

Google Scholar

[6] E. Arroyo, A. Badel, F. Formosa, Y. Wu, J. Qiu, Comparison of electromagnetic and piezoelectric vibration energy harvesters: Model and experiments, [J]. Sensors and Actuators A 183(2012) 148-156.

DOI: 10.1016/j.sna.2012.04.033

Google Scholar

[7] B. Yang, C. Lee, W. Xiang, J. Xie, J.H. He, R.K. Kotlanka, S.P. Low, H. Feng, Electromagnetic energy harvesting from vibrations of multiple frequencies [J]. Micromechanics and Microengineeting, 2009, 035001(19): 8pp.

DOI: 10.1088/0960-1317/19/3/035001

Google Scholar

[8] Edwar Romero-Ramirez, Energy harvesting from Body motion using rotational micro-generation, 2010, 33-34.

DOI: 10.37099/mtu.dc.etds/404

Google Scholar

[9] R. Torah, P. Glynne-Jones, M. Tudor, T. O'Donnell, S. Roy, S. Beeby, Self-powered autonomous wireless sensor node using vibration energy harvesting[J], Measurement Science and Technology, 2008, 19(12), 125202.

DOI: 10.1088/0957-0233/19/12/125202

Google Scholar

[10] Emmanuel Bouendeu. Printed Circuit Board-Based Electromagnetic Vibration Energy Harvesters [D]. Albert Ludwig University of Freiburg im Breisgau. June (2010).

Google Scholar

[11] Tom J. Kazmierski, Steve Beeby, Energy harvesting systerms pinciples, modeling and applications.

Google Scholar

[12] S. Kulkarni, E. Koukharenko, R. Torah, J. Tudor, S. Beeby, T. O'Donnell, and S. Roy, Design, fabrication and test of integrated microscale vibration-based electromagnetic generator, Sensors and Actuators A, vol. 145-146, pp.336-342, July-August, (2008).

DOI: 10.1016/j.sna.2007.09.014

Google Scholar

[13] D. Spreemann, D. Hoffmann, B. Folkmer, Y. Manoli. Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration [J]. Micromechanics and Microengineering, 2008, 104001(8): 46-57.

DOI: 10.1088/0960-1317/18/10/104001

Google Scholar

[14] E. Koukharenko, S. P. Beeby, M. J. Tudor, N. M. white, T. O'Donnell, C. R. Saha, S. Kulkarni, and S. Roy, Microelectromechanical systems vibration powered electromagnetic generator for wireless sensorapplications, Microsystem Technologies, vol. 12, no. 10-11, pp.1071-1077, (2006).

DOI: 10.1007/s00542-006-0137-8

Google Scholar

[15] S. P. Beeby, R. N. Torah, M. J, Tudor, P. Glynne-Jones, T. O'Donnell, C. R. Saha, and S. Roy, A micro electromagnetic generator for vibration energy harvesting, Journal of Micromechanics and Microengineering, vol. 17, pp.1257-1265, (2007).

DOI: 10.1088/0960-1317/17/7/007

Google Scholar

[16] Byung-Chul Lee, Md Ataur Rahman, Seung-Ho Hyun and Gwiy-Sang Chung, Low frequency driven electromagnetic harvester for self-power system [J]. Smart Mater. Struct. 21 (2012) 125024(7pp).

DOI: 10.1088/0964-1726/21/12/125024

Google Scholar

[17] Santosh Kulkarni, Elena Koukharenko, Russell Torah, John Tudor, Steve Beeby, Terence O'Dnnell and Saibal Roy, Design, fabrication and test of integrated micro-scale vibrtion-based electromagnetic generator [J]. Sensors and Actuators A 145-146 (2008).

DOI: 10.1016/j.sna.2007.09.014

Google Scholar