Stabilization of Pickering Emulsions by Bacterial Cellulose Nanofibrils

Article Preview

Abstract:

In order to develop safe and sustainable food and pharmaceutical emulsions, bacterial cellulose (BC) nanofibrils were prepared to stabilize maize oil/water Pickering emulsions. The influence of BC content and pH value on the emulsion stability was explored. Droplet diameters decreased with BC contents in emulsions. At pH 12, the emulsions were most stable among all tested pH values. The transformation of emulsion structure from liquid to gel-like at 8-15°C with BC content higher than 1.55 g/L is predominantly depended on the viscoelastic entangled BC network. These results can have meaningful inspiration of designing edible food and pharmaceutical emulsions.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

1247-1254

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. P. Binks, Particles as surfactants similarities and differences, Curr. Opin. Colloid Interface Sci. 7 (2002) 21-41.

Google Scholar

[2] F. Leal-Calderon, V. Schmitt, Solid-stabilized emulsions, Curr. Opin. Colloid Interface Sci. 13 (2008) 217-227.

DOI: 10.1016/j.cocis.2007.09.005

Google Scholar

[3] W. Ramsden, Separation of Solids in the Surface-layers of Solutions and Suspensions,. Proc. R. Soc. London: Series A. 72 (1903) 156-164.

Google Scholar

[4] S. U. Pickering, Emulsions, J. Chem. Soc. 91 (1907) 2001-(2021).

Google Scholar

[5] Rayner Marilyn, Marku Diana, Eriksson Madeleine, et al., Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications, Colloids Surf. A Physicochem. Eng. Asp. 458 (2014) 48-62.

DOI: 10.1016/j.colsurfa.2014.03.053

Google Scholar

[6] Chevalier Yves, Bolzinger Marie-Alexandrine, Emulsions stabilized with solid nanoparticles: Pickering emulsions, Colloids Surf. A Physicochem. Eng. Asp. 439 (2013) 23-24.

DOI: 10.1016/j.colsurfa.2013.02.054

Google Scholar

[7] J. Cayre Olivier, N. Paunov Vesselin, Contact angles of colloid silica and gold particles at air-water and oil-water interfaces determined with the gel trapping technique, Langmuir. 20 (2004) 9594-9599.

DOI: 10.1021/la0489615

Google Scholar

[8] Frelichowska Justyna, Bolzinger Marie-Alexandrine, Chevalier Yves, Effects of solid particle content on properties of o/w Pickering emulsions, J. Colloid Interface Sci. 351(2010) 348-356.

DOI: 10.1016/j.jcis.2010.08.019

Google Scholar

[9] Li Chen, Li, Yunxing, Sun, Peidong, et al., Pickering emulsions stabilized by native starch granules, Colloids Surf. A Physicochem. Eng. Asp. 431 (2013) 142-149.

DOI: 10.1016/j.colsurfa.2013.04.025

Google Scholar

[10] Kalashnikova Irina, Bizot Herve, Cathala, Bernard, et al., New Pickering emulsions stabilized by bacterial cellulose nanocrystals, Langmuir. 27 (2011) 7471-7479.

DOI: 10.1021/la200971f

Google Scholar

[11] Capron Isabelle, Cathala Bernard, Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals, Biomacromolecules. 14 (2013) 291-296.

DOI: 10.1021/bm301871k

Google Scholar

[12] Kalashnikova Irina, Bizot Herve, Bertoncini Patricia, et al., Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions, Soft Matter. 9 (2013) 952-959.

DOI: 10.1039/c2sm26472b

Google Scholar

[13] Marefati Ali, Rayner Marilyn, Timgren Anna, et al., Freezing and freeze-drying of Pickering emulsions stabilized by starch granules, Colloids Surf. A Physicochem. Eng. Asp. 436 (2013) 512-520.

DOI: 10.1016/j.colsurfa.2013.07.015

Google Scholar

[14] J. Chen, R. Vogel, S. Werner, Influence of the particle type on the rheological behavior of Pickering emulsions, Colloids Surf. A Physicochem. Eng. Asp. 382 (2011) 238-245.

DOI: 10.1016/j.colsurfa.2011.02.003

Google Scholar

[15] P. Thanasukarn, R. Pongsawatmanit, D. J. McClements, Impact of fat and water crystallization on the stability of hydrogenated palm oil-in-water emulsions stabilized by whey protein isolate, Colloids Surf. A Physicochem. Eng. Asp. 246 (2004).

DOI: 10.1016/j.colsurfa.2004.07.018

Google Scholar

[16] N. Tonouchi, T. Tsuchida, F. Yoshinaga, et al., Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum, Biosci. Biotechnol. Biochem. 60 (1996) 1377-1379.

DOI: 10.1271/bbb.60.1377

Google Scholar

[17] M. Iguchi, S. Yamanaka, A. Budhiono, Bacterial cellulose: A masterpiece of nature's arts. J Mater Sci. 35 (2000) 261-270.

Google Scholar

[18] Jonas R, Farah L F., Production and application of microbial cellulose, Polym. Degrad. Stab. 59 (1998) 101-106.

Google Scholar

[19] Zaar K. Visulization of pores (export sites) correlated with cellulose production in the envelop of the gram-negative bacterium Acetobacter xylinum, J. Cell Biol. 80 (1979) 773-777.

DOI: 10.1083/jcb.80.3.773

Google Scholar

[20] Ashjaran Ali, Yazdanshenas Mohammad Esmail, Rashidi Abosaeed, et al., Overview of bio nanofabric from bacterial cellulose, Journal of the Textile Institute. 104 (2013) 121-131.

DOI: 10.1080/00405000.2012.703796

Google Scholar

[21] Cai Zhijiang, Kim Jaehwan, Bacterial cellulose/poly (ethylene glycol) composite: Characterization and first evaluation of biocompatibility, Cellulose. 17 (2010) 83-91.

DOI: 10.1007/s10570-009-9362-5

Google Scholar

[22] Zhijiang Cai, Chengwei Hou, Guang Yang, Poly (3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: Preparation, characterization and biocompatibility evaluation, Carbohydr. Polym. 87 (2012) 1073-1080.

DOI: 10.1016/j.carbpol.2011.08.037

Google Scholar

[23] Huang Yang, Zhu Chunlin, Yang Jiazhi, et al., Recent advances in bacterial cellulose, Cellulose. 21 (2014) 1-30.

Google Scholar

[24] Jia Yuan-Yuan, Wan Tong, Huo Ming-Ming, et al., Stabilization of Oil/Water Emulsions by Microfibrillized Bacterial Cellulose, Chemical Journal of Chinese Universities-Chinese. 34 (2013) 1475-1482.

Google Scholar

[25] Jun Zhou, Preparation and stability investigations of the magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles. D. Shanghai, China: Shanghai Jiaotong University. (2011).

Google Scholar

[26] B. Derakhshandeh, R. J. Kerekes, S. G. Hatzikiriakos, Rheology of pulp fibre suspensions: A critical review, Chem. Eng. Sci. 66 (2011) 3460-3470.

DOI: 10.1016/j.ces.2011.04.017

Google Scholar

[27] M. El-Mahrab-Robert, V. Rosilio, M. A. Bolzinger, et al., Assessment of oil polarity: Comparison of evaluation methods, Int. J. Pharm. 348 (2008) 89-94.

DOI: 10.1016/j.ijpharm.2007.07.027

Google Scholar

[28] H. Ougiya, K. Watanabe, T. Matsumura, et al., Relationship between suspension properties and fibril structure of disintegrated bacterial cellulose, Biosci. Biotechnol. Biochem. 62 (1998) 1714-1719.

DOI: 10.1271/bbb.62.1714

Google Scholar

[29] D. E. Tambe, M. M. Sharma, Factors controlling the stability of colloid-stabilized emulsions II. A model for the rheological properties of colloid-laden interfaces, J. Colloid Interface Sci. 162 (1994) 1-10.

DOI: 10.1006/jcis.1994.1001

Google Scholar

[30] Grazyna Bortnowska, Jerzy Balejko, Grzegorz Tokarczyk, et al., Effects of pregelatinized waxy maize starch on the physicochemical properties and stability of model low-fat oil-in-water food emulsions, Food Hydrocolloids. 36 (2014) 229-237.

DOI: 10.1016/j.foodhyd.2013.09.012

Google Scholar

[31] F. Freitas, V. D. Alves, M. Carvalheira, et al., Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct, Carbohydr. Polym. 78 (2009) 549-556.

DOI: 10.1016/j.carbpol.2009.05.016

Google Scholar

[32] Fredrick Eveline, Walstra Pieter, Dewettinck Koen, Factors governing partial coalescence in oil-in-water emulsions, Adv. Colloid Interface Sci. 153 (2010) 30-42.

DOI: 10.1016/j.cis.2009.10.003

Google Scholar