[1]
B. P. Binks, Particles as surfactants similarities and differences, Curr. Opin. Colloid Interface Sci. 7 (2002) 21-41.
Google Scholar
[2]
F. Leal-Calderon, V. Schmitt, Solid-stabilized emulsions, Curr. Opin. Colloid Interface Sci. 13 (2008) 217-227.
DOI: 10.1016/j.cocis.2007.09.005
Google Scholar
[3]
W. Ramsden, Separation of Solids in the Surface-layers of Solutions and Suspensions,. Proc. R. Soc. London: Series A. 72 (1903) 156-164.
Google Scholar
[4]
S. U. Pickering, Emulsions, J. Chem. Soc. 91 (1907) 2001-(2021).
Google Scholar
[5]
Rayner Marilyn, Marku Diana, Eriksson Madeleine, et al., Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications, Colloids Surf. A Physicochem. Eng. Asp. 458 (2014) 48-62.
DOI: 10.1016/j.colsurfa.2014.03.053
Google Scholar
[6]
Chevalier Yves, Bolzinger Marie-Alexandrine, Emulsions stabilized with solid nanoparticles: Pickering emulsions, Colloids Surf. A Physicochem. Eng. Asp. 439 (2013) 23-24.
DOI: 10.1016/j.colsurfa.2013.02.054
Google Scholar
[7]
J. Cayre Olivier, N. Paunov Vesselin, Contact angles of colloid silica and gold particles at air-water and oil-water interfaces determined with the gel trapping technique, Langmuir. 20 (2004) 9594-9599.
DOI: 10.1021/la0489615
Google Scholar
[8]
Frelichowska Justyna, Bolzinger Marie-Alexandrine, Chevalier Yves, Effects of solid particle content on properties of o/w Pickering emulsions, J. Colloid Interface Sci. 351(2010) 348-356.
DOI: 10.1016/j.jcis.2010.08.019
Google Scholar
[9]
Li Chen, Li, Yunxing, Sun, Peidong, et al., Pickering emulsions stabilized by native starch granules, Colloids Surf. A Physicochem. Eng. Asp. 431 (2013) 142-149.
DOI: 10.1016/j.colsurfa.2013.04.025
Google Scholar
[10]
Kalashnikova Irina, Bizot Herve, Cathala, Bernard, et al., New Pickering emulsions stabilized by bacterial cellulose nanocrystals, Langmuir. 27 (2011) 7471-7479.
DOI: 10.1021/la200971f
Google Scholar
[11]
Capron Isabelle, Cathala Bernard, Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals, Biomacromolecules. 14 (2013) 291-296.
DOI: 10.1021/bm301871k
Google Scholar
[12]
Kalashnikova Irina, Bizot Herve, Bertoncini Patricia, et al., Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions, Soft Matter. 9 (2013) 952-959.
DOI: 10.1039/c2sm26472b
Google Scholar
[13]
Marefati Ali, Rayner Marilyn, Timgren Anna, et al., Freezing and freeze-drying of Pickering emulsions stabilized by starch granules, Colloids Surf. A Physicochem. Eng. Asp. 436 (2013) 512-520.
DOI: 10.1016/j.colsurfa.2013.07.015
Google Scholar
[14]
J. Chen, R. Vogel, S. Werner, Influence of the particle type on the rheological behavior of Pickering emulsions, Colloids Surf. A Physicochem. Eng. Asp. 382 (2011) 238-245.
DOI: 10.1016/j.colsurfa.2011.02.003
Google Scholar
[15]
P. Thanasukarn, R. Pongsawatmanit, D. J. McClements, Impact of fat and water crystallization on the stability of hydrogenated palm oil-in-water emulsions stabilized by whey protein isolate, Colloids Surf. A Physicochem. Eng. Asp. 246 (2004).
DOI: 10.1016/j.colsurfa.2004.07.018
Google Scholar
[16]
N. Tonouchi, T. Tsuchida, F. Yoshinaga, et al., Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum, Biosci. Biotechnol. Biochem. 60 (1996) 1377-1379.
DOI: 10.1271/bbb.60.1377
Google Scholar
[17]
M. Iguchi, S. Yamanaka, A. Budhiono, Bacterial cellulose: A masterpiece of nature's arts. J Mater Sci. 35 (2000) 261-270.
Google Scholar
[18]
Jonas R, Farah L F., Production and application of microbial cellulose, Polym. Degrad. Stab. 59 (1998) 101-106.
Google Scholar
[19]
Zaar K. Visulization of pores (export sites) correlated with cellulose production in the envelop of the gram-negative bacterium Acetobacter xylinum, J. Cell Biol. 80 (1979) 773-777.
DOI: 10.1083/jcb.80.3.773
Google Scholar
[20]
Ashjaran Ali, Yazdanshenas Mohammad Esmail, Rashidi Abosaeed, et al., Overview of bio nanofabric from bacterial cellulose, Journal of the Textile Institute. 104 (2013) 121-131.
DOI: 10.1080/00405000.2012.703796
Google Scholar
[21]
Cai Zhijiang, Kim Jaehwan, Bacterial cellulose/poly (ethylene glycol) composite: Characterization and first evaluation of biocompatibility, Cellulose. 17 (2010) 83-91.
DOI: 10.1007/s10570-009-9362-5
Google Scholar
[22]
Zhijiang Cai, Chengwei Hou, Guang Yang, Poly (3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: Preparation, characterization and biocompatibility evaluation, Carbohydr. Polym. 87 (2012) 1073-1080.
DOI: 10.1016/j.carbpol.2011.08.037
Google Scholar
[23]
Huang Yang, Zhu Chunlin, Yang Jiazhi, et al., Recent advances in bacterial cellulose, Cellulose. 21 (2014) 1-30.
Google Scholar
[24]
Jia Yuan-Yuan, Wan Tong, Huo Ming-Ming, et al., Stabilization of Oil/Water Emulsions by Microfibrillized Bacterial Cellulose, Chemical Journal of Chinese Universities-Chinese. 34 (2013) 1475-1482.
Google Scholar
[25]
Jun Zhou, Preparation and stability investigations of the magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles. D. Shanghai, China: Shanghai Jiaotong University. (2011).
Google Scholar
[26]
B. Derakhshandeh, R. J. Kerekes, S. G. Hatzikiriakos, Rheology of pulp fibre suspensions: A critical review, Chem. Eng. Sci. 66 (2011) 3460-3470.
DOI: 10.1016/j.ces.2011.04.017
Google Scholar
[27]
M. El-Mahrab-Robert, V. Rosilio, M. A. Bolzinger, et al., Assessment of oil polarity: Comparison of evaluation methods, Int. J. Pharm. 348 (2008) 89-94.
DOI: 10.1016/j.ijpharm.2007.07.027
Google Scholar
[28]
H. Ougiya, K. Watanabe, T. Matsumura, et al., Relationship between suspension properties and fibril structure of disintegrated bacterial cellulose, Biosci. Biotechnol. Biochem. 62 (1998) 1714-1719.
DOI: 10.1271/bbb.62.1714
Google Scholar
[29]
D. E. Tambe, M. M. Sharma, Factors controlling the stability of colloid-stabilized emulsions II. A model for the rheological properties of colloid-laden interfaces, J. Colloid Interface Sci. 162 (1994) 1-10.
DOI: 10.1006/jcis.1994.1001
Google Scholar
[30]
Grazyna Bortnowska, Jerzy Balejko, Grzegorz Tokarczyk, et al., Effects of pregelatinized waxy maize starch on the physicochemical properties and stability of model low-fat oil-in-water food emulsions, Food Hydrocolloids. 36 (2014) 229-237.
DOI: 10.1016/j.foodhyd.2013.09.012
Google Scholar
[31]
F. Freitas, V. D. Alves, M. Carvalheira, et al., Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct, Carbohydr. Polym. 78 (2009) 549-556.
DOI: 10.1016/j.carbpol.2009.05.016
Google Scholar
[32]
Fredrick Eveline, Walstra Pieter, Dewettinck Koen, Factors governing partial coalescence in oil-in-water emulsions, Adv. Colloid Interface Sci. 153 (2010) 30-42.
DOI: 10.1016/j.cis.2009.10.003
Google Scholar