Ejection and Motion Behaviors Simulation for Multi-Jet Electrospinning

Article Preview

Abstract:

Multi-jet ejection is the key factor to promote the industrial application of electrospinning technology. Simulation model based on Maxwell theory was built up to investigate the ejection and motion behaviors of multi charged jets. The charge Coulomb repulsive force among adjacent jet was introduced into the simulation model, which enhanced the instability motion and promoted the stretching process of charged jets. The stretching ratio of charged jet increased with the increasing of injection distance, applied voltage, distance between spinneret and collector. But stretching ratio of charged jet decreased with the increasing of distance between charged jets. Stretching ratio in multi-jet electrospinning was larger than that in single-jet electrospinning. The maximal stretching ratio of charged jet was larger than 9000 in the nine jets electrospinning mode. This work provided a good method to investigate the controlling technology of multi-jet electrospinning.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

281-286

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Anu Bhushani, C. Anandharamakrishnan. Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology, 38(2014), 21-33.

DOI: 10.1016/j.tifs.2014.03.004

Google Scholar

[2] H. Wang, G. Zheng, D. Sun. Air filtration performance of nanofibers membranes electrospuned with difference nanofiber diameters. Journal of functional materials and device, 14(2007), 153-157.

Google Scholar

[3] G. Zheng, G. He, H. Liu, J. Zheng, W. Li, D. Sun. Electrospun Zinc Oxide Nanofibrous Gas Sensors for Alcohol and Acetone. Optics and Precision Engineering, 22(2014), 1555-1561.

DOI: 10.3788/ope.20142206.1555

Google Scholar

[4] D. Li, T. Wu, N. He, J. Wang, W. Chen, L. He, C. Huang, H. A. Ei-Hamshary, S. S. Al-Deyab, Q. Ke, X. Mo. Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Colloids and Surfaces B: Biointerfaces, 121(2014).

DOI: 10.1016/j.colsurfb.2014.06.034

Google Scholar

[5] G. F. Zheng, Y. B. Pei, X. Wang, J. Y. Zheng, D. H. Sun. Electrohydrodynamic direct-writing of conductor-insulator-conductor multi-layer interconnection. Chinese Physics B, 23(2014), 066102.

DOI: 10.1088/1674-1056/23/6/066102

Google Scholar

[6] X. Wang, G. Zheng, G. He, J. Wei, H. Liu, Y. Lin, J. Zheng, D. Sun. Electrohydrodynamic direct-writing ZnO nanofibers for device applications. Materials Letters, 109(2013), 58-61.

DOI: 10.1016/j.matlet.2013.07.051

Google Scholar

[7] P. S. Kumar, J. Sundaramurthy, S. Sundarrajan, V. J. Babu, G. Singh, S. I. Allakhverdiev, S. Ramakrishna. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy & Environmental Science, 7(2014).

DOI: 10.1039/c4ee00612g

Google Scholar

[8] D. Z. Wu, X. P. Huang, X. T. Lai, D. H. Sun, L. W. Lin. High Throughput Tip-Less Electrospinning via a Circular Cylindrical Electrode. Journal of Nanoscience and Nanotechnology, 10(2010), 4221-4226.

DOI: 10.1166/jnn.2010.2194

Google Scholar

[9] X. Hu, X. Huang, D. Sun, D. Wu. Electrospinning via mechanically single probe-tip drawing for massive production. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 226(2012), 27-30.

DOI: 10.1177/1740349912441759

Google Scholar

[10] X. Wang, H. Niu, X. Wang, T. Lin. Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. Journal of Nanomaterials, 2012(2012), 785920.

DOI: 10.1155/2012/785920

Google Scholar

[11] H. Sugiyama, H. Ogura, T. Shiojima, Y. Otsubo. Simulation of Electrohydrodynamic Jet Flow in Dielectric Fluids. Journal of Applied Fluid Mechanics, 6(2013), 405-412.

Google Scholar

[12] J. A. Fang, H. X. Wang, H. T. Niu, T. Lin, X. G. Wang. Evolution of fiber morphology during electrospinning. Journal of Applied Polymer Science, 118(2010), 2553-2561.

DOI: 10.1002/app.32569

Google Scholar

[13] T. A. Kowalewski, S. Barral, T. Kowalczyk. Modeling electrospinning of nanofibers, in: R. Pyrz, J. C. Rauhe (Eds. ), Iutam Symposium on Modelling Nanomaterials and Nanosystems, Neu-Isenburg, Spinger, 2009, pp.279-292.

DOI: 10.1007/978-1-4020-9557-3_29

Google Scholar

[14] Y. C. Zeng, Y. F. Sun, X. H. Wang. Numerical approach to modeling fiber motion during melt blowing. Journal of Applied Polymer Science, 119(2011), 2112-2123.

DOI: 10.1002/app.32921

Google Scholar

[15] W. Li, G. Zheng, X. Wang, Y. Zhang, L. Li, L. Wang, H. Wang, D. Sun. Directly electrospun ultrafine nanofibres with Cu grid spinneret. Journal of Physics D-Applied Physics, 44(2011), 135502.

DOI: 10.1088/0022-3727/44/13/135502

Google Scholar

[16] S. Rafiei, S. Maghsoodloo, B. Noroozi, V. Mottaghitalab, A. Haghi. Mathematical modeling in electrospinning process of nanofibers: a detailed review. Cellul Chem Technol, 47(2013), 323-338.

Google Scholar

[17] J. Jirsák, F. Moučka, I. Nezbeda. Insight into Electrospinning via Molecular Simulations. Industrial & Engineering Chemistry Research, 53(2014), 8257-8264.

DOI: 10.1021/ie404268f

Google Scholar