Size Effect of Piezoelectricity in ZnO Nanowires: A First-Principles Study

Article Preview

Abstract:

Piezoelectric properties of ZnO nanowires orientated along [0001] are investigated via density functional theory (DFT). A new method to calculate the volume of nanowires was proposed, which is crucial to the value of piezoelectric coefficients. Results show that the axial effective piezoelectric coefficients are 29.99 Cm-2, 25.93 Cm-2, 22.82 Cm-2 for ZnO nanowires with diameters of about 0.6 nm, 1.2 nm, 1.8 nm, which are considerably larger than that of the bulk (20.19Cm-2). It is found that the change in volume during the strain played a dominated role in size effects. This work helps to gain a deeper understanding of the piezoelectric size effects in ZnO nanowires.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

275-280

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kong YC, Yu DP, Zhang B, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Appl Phys Lett. 78 (2001) 407-409.

DOI: 10.1063/1.1342050

Google Scholar

[2] Dai Y, Zhang Y, Li QK, Synthesis and optical properties of tetrapod-like zinc oxide nanorods, Chem Phys Lett. 358 (2002) 83-86.

DOI: 10.1016/s0009-2614(02)00582-1

Google Scholar

[3] Li P, Liao Q, Yang S, In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain, Nano letters. 14 (2014) 480-485.

DOI: 10.1021/nl403426c

Google Scholar

[4] Ya Y, Junjie Q, Wen G, Transverse piezoelectric field-effect transistor based on single ZnO nanobelts, Phys Chem Chem Phys. 39 (2010) 12415-12419.

DOI: 10.1039/c0cp00420k

Google Scholar

[5] Yang Y, Qi JJ, Gu YS, Piezotronic strain sensor based on single bridged ZnO wires, Physica Status Solidi (RRL). 3 (2009) 269-271.

DOI: 10.1002/pssr.200903231

Google Scholar

[6] Hu CJ, Lin YH, Tang CW, ZnO-Coated Carbon Nanotubes: Flexible Piezoelectric Generators, Adv Mater. 23 (2011) 2941-2945.

DOI: 10.1002/adma.201100358

Google Scholar

[7] Song JH, Zhou J, Wang ZL, Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire, Nano Lett. 6 (2006) 1656-1662.

DOI: 10.1021/nl060820v

Google Scholar

[8] Zhong Lin W. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics, Nano Today. 5 (2010) 540-542.

DOI: 10.1016/j.nantod.2010.10.008

Google Scholar

[9] Xiang HJ, Yang J, Hou JG, Piezoelectricity in ZnO nanowires: A first-principles study, Appl Phys Lett. 89 (2006) 223111-1-3.

Google Scholar

[10] Agrawal R, Espinosa HD, Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires, A first principles investigation, Nano Lett. 11 (2011) 786-790.

DOI: 10.1021/nl104004d

Google Scholar

[11] Korir KK, Cicero G, Catellani A, Piezoelectric properties of zinc oxide nanowires: an ab initio study, Nanotechnology. 24 (2013) 475401-1-5.

DOI: 10.1088/0957-4484/24/47/475401

Google Scholar

[12] Wu X, Vanderbilt D, Hamann D, Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory, Phys Rev B. 72 (2005) 35105-1-13.

DOI: 10.1103/physrevb.72.035105

Google Scholar

[13] Soler JM, Artacho E, Gale JD, The SIESTA method for ab initio order-N materials simulation, J Phys-Condes Matter. 14 (2002) 2745-2779.

DOI: 10.1088/0953-8984/14/11/302

Google Scholar

[14] Troullier N, Martins JL, Efficient pseudopotentials for plane-wave calculations, Phys Rev B. 43 (1991) 1993-(2006).

DOI: 10.1103/physrevb.43.1993

Google Scholar

[15] King-Smith RD, Vanderbilt D, Theory of polarization of crystalline solids, Phys Rev B. 47 (1993) 1651-1654.

DOI: 10.1103/physrevb.47.1651

Google Scholar

[16] Yoshio K, Onodera A, Satoh H, Crystal structure of ZnO: Li at 293 K and 19 K by X-ray diffraction, Ferroelectrics. 264 (2001) 133-138.

DOI: 10.1080/00150190108008559

Google Scholar

[17] Huang YH, Zhang Y, Wang XQ, Size Independence and Doping Dependence of Bending Modulus in ZnO Nanowires, Cryst Growth Des. 9 (2009) 1640-1642.

DOI: 10.1021/cg800535z

Google Scholar

[18] Pant P, Budai JD, Aggarwal R, Structural characterization of two-step growth of epitaxial ZnO films on sapphire substrates at low temperatures, Jour Phys D: Appl Phys. 24 (2009) 105409-1-8.

DOI: 10.1088/0022-3727/42/10/105409

Google Scholar

[19] Mirnezhad M, Ansari R, Rouhi H, Effects of hydrogen adsorption on mechanical properties of chiral single-walled zinc oxide nanotubes, Jour Appl Phys. 111 (2012) 014308-1-11.

DOI: 10.1063/1.3673867

Google Scholar

[20] Peng Q, Liang C, Ji W, A first principles investigation of the mechanical properties of g-ZnO: The graphene-like hexagonal zinc oxide monolayer, Comp Mater Sci. 68 (2013) 320-324.

DOI: 10.1016/j.commatsci.2012.10.019

Google Scholar