[1]
Kong YC, Yu DP, Zhang B, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Appl Phys Lett. 78 (2001) 407-409.
DOI: 10.1063/1.1342050
Google Scholar
[2]
Dai Y, Zhang Y, Li QK, Synthesis and optical properties of tetrapod-like zinc oxide nanorods, Chem Phys Lett. 358 (2002) 83-86.
DOI: 10.1016/s0009-2614(02)00582-1
Google Scholar
[3]
Li P, Liao Q, Yang S, In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain, Nano letters. 14 (2014) 480-485.
DOI: 10.1021/nl403426c
Google Scholar
[4]
Ya Y, Junjie Q, Wen G, Transverse piezoelectric field-effect transistor based on single ZnO nanobelts, Phys Chem Chem Phys. 39 (2010) 12415-12419.
DOI: 10.1039/c0cp00420k
Google Scholar
[5]
Yang Y, Qi JJ, Gu YS, Piezotronic strain sensor based on single bridged ZnO wires, Physica Status Solidi (RRL). 3 (2009) 269-271.
DOI: 10.1002/pssr.200903231
Google Scholar
[6]
Hu CJ, Lin YH, Tang CW, ZnO-Coated Carbon Nanotubes: Flexible Piezoelectric Generators, Adv Mater. 23 (2011) 2941-2945.
DOI: 10.1002/adma.201100358
Google Scholar
[7]
Song JH, Zhou J, Wang ZL, Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire, Nano Lett. 6 (2006) 1656-1662.
DOI: 10.1021/nl060820v
Google Scholar
[8]
Zhong Lin W. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics, Nano Today. 5 (2010) 540-542.
DOI: 10.1016/j.nantod.2010.10.008
Google Scholar
[9]
Xiang HJ, Yang J, Hou JG, Piezoelectricity in ZnO nanowires: A first-principles study, Appl Phys Lett. 89 (2006) 223111-1-3.
Google Scholar
[10]
Agrawal R, Espinosa HD, Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires, A first principles investigation, Nano Lett. 11 (2011) 786-790.
DOI: 10.1021/nl104004d
Google Scholar
[11]
Korir KK, Cicero G, Catellani A, Piezoelectric properties of zinc oxide nanowires: an ab initio study, Nanotechnology. 24 (2013) 475401-1-5.
DOI: 10.1088/0957-4484/24/47/475401
Google Scholar
[12]
Wu X, Vanderbilt D, Hamann D, Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory, Phys Rev B. 72 (2005) 35105-1-13.
DOI: 10.1103/physrevb.72.035105
Google Scholar
[13]
Soler JM, Artacho E, Gale JD, The SIESTA method for ab initio order-N materials simulation, J Phys-Condes Matter. 14 (2002) 2745-2779.
DOI: 10.1088/0953-8984/14/11/302
Google Scholar
[14]
Troullier N, Martins JL, Efficient pseudopotentials for plane-wave calculations, Phys Rev B. 43 (1991) 1993-(2006).
DOI: 10.1103/physrevb.43.1993
Google Scholar
[15]
King-Smith RD, Vanderbilt D, Theory of polarization of crystalline solids, Phys Rev B. 47 (1993) 1651-1654.
DOI: 10.1103/physrevb.47.1651
Google Scholar
[16]
Yoshio K, Onodera A, Satoh H, Crystal structure of ZnO: Li at 293 K and 19 K by X-ray diffraction, Ferroelectrics. 264 (2001) 133-138.
DOI: 10.1080/00150190108008559
Google Scholar
[17]
Huang YH, Zhang Y, Wang XQ, Size Independence and Doping Dependence of Bending Modulus in ZnO Nanowires, Cryst Growth Des. 9 (2009) 1640-1642.
DOI: 10.1021/cg800535z
Google Scholar
[18]
Pant P, Budai JD, Aggarwal R, Structural characterization of two-step growth of epitaxial ZnO films on sapphire substrates at low temperatures, Jour Phys D: Appl Phys. 24 (2009) 105409-1-8.
DOI: 10.1088/0022-3727/42/10/105409
Google Scholar
[19]
Mirnezhad M, Ansari R, Rouhi H, Effects of hydrogen adsorption on mechanical properties of chiral single-walled zinc oxide nanotubes, Jour Appl Phys. 111 (2012) 014308-1-11.
DOI: 10.1063/1.3673867
Google Scholar
[20]
Peng Q, Liang C, Ji W, A first principles investigation of the mechanical properties of g-ZnO: The graphene-like hexagonal zinc oxide monolayer, Comp Mater Sci. 68 (2013) 320-324.
DOI: 10.1016/j.commatsci.2012.10.019
Google Scholar