Intermolecular-Interaction and Mechanical Properties of MNs-Plasticizer Modified 2,4,6-Trinitrotoluene/1,3,5-Trinitrohexahydro-1,3,5-Triazine Molten-Energetic-Composite(MEC)

Article Preview

Abstract:

Intermolecular interaction of mononitrotoluenes (MNs) plasticizer with 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrohexahydro-1,3,5-triazine (RDX) was experimentally and theoretically investigated. The basis set superposition error (BSSE) and interaction energy of TNT, RDX and plasticizers were computed at MP2/6-311++G** levels. Compared with the weak Einter between RDX and TNT (−1.586 kJ/mol), Einter between the o-nitrotoluene and TNT and RDX can increase to −131.557 kJ/mol and −48.487 kJ/mol, indicating there is strong intermolecular-interaction. SEM imagines also show that mononitrotoluene could form layered deposits in TNT and closely surround RDX crystalline. MD simulation results indicate that tensile modulus of (100) TNT and (100) RDX increases when introducing mononitrotoluene plasticizers separately, which agree with the experimental phenomenon of Brazilian disk test.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

252-258

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. W. A. M. Janssen, H. J. Koeners, C. G. Kruse, and C. L. Habraken. Pyrazoles. XII. The preparation of 3(5)-Nitropyrazoles by Thermal Rearrangement of N-Nitropyrazoles, J. Org. Chem. 38 (1978) 1777−1782.

DOI: 10.1021/jo00950a001

Google Scholar

[2] S. Nicolich, J. Niles, P. Ferlazzo, D. Doll, P. Braithwaite, N. Rausmussen, M. Ray, M. Gunger and A. Spencer. Recent developments in reduced sensitivity melt pour explosives. 34th International Annual Conference of ICT, Karlsruhe, Germany, June 24–27, 2003, p.135.

Google Scholar

[3] D. S. Watt, M. D. Cliff. Evaluation of 1, 3, 3 trinitro azetidine (TNAZ)- A High Performance Melt-Castable Explosive. Defence Science and Technology Organisation, Adelaide, Australia, DSTO-TR-1000. (2000).

Google Scholar

[4] F. Zhao, P. Chen, R. Hu, Y. Luo, Z. Zhang, Y. Zhou, X. Yang, Y. Gao, S. Gao, Q. Shi. Thermochemical Propertiesnand Non-Isothermal Decomposition Reaction Kinetics of 3, 4-Dinitrofurazanfuroxan (DNTF), J. Hazard. Mater. A113 (2004) 67–71.

Google Scholar

[5] S. Singh, R. Damavarapu, R. Surapaneni, P. Samuel. An insensitive melt-cast energetic material: 1-methyl-2, 4, 5-trinitroimidazole: MTNI. 38th International Annual Conference of ICT, Karlsruhe, Germany, June 30-July 3, 2007, p.147.

Google Scholar

[6] Q. Ma, Y. J. Shu, G. Luo, L. Chen, B. Zheng, H. Li. Toughening and elasticizing route of TNT based melt-cast explosives, Chin.J. Energ. Mater. 20 (2012) 618–629.

Google Scholar

[7] P. Ravi, D. M. Badgujar, G. M. Gore, S. P. Tewari, A. K. Sikder. Review on Melt Cast Explosives, Propellants, Explos., Pyrotech. 36 (2011) 393–403.

DOI: 10.1002/prep.201100047

Google Scholar

[8] D. L. Smith, B. W. Thorpe. Fracture in the high explosive RDX/TNT, J. Mate. Sci. 8 (1973) 757−759.

DOI: 10.1007/bf00561228

Google Scholar

[9] X.Q. Niu, J.G. Zhang, X.J. Feng, P.W. Chen, T.L. Zhang, S.Y. Wang, S.W. Zhang, Z.N. Zhou, L. Yang. Theoretical investigation on intermolecular interactions between the ingredients TNT and RDX of composition B. Acta Chim. Sinica 69(2011) 1627−1638.

Google Scholar

[10] W. Kegler. Einige Betrachtungen über die Herstellung Von TNT-RDX-giesslingen. Explosivstoffe 8 (1960) 1−4.

Google Scholar

[11] Y. Wang, X. Tang. Study on modification of cast TNT-RDX charges. Chin. J. Energ. Mater. 2 (1994) 7−11.

Google Scholar

[12] National Military Standard of China. Experimental methods of sensitivity and safety GJB/772A-97. (1997).

Google Scholar

[13] M.J. Frisch, G.W. Trucks, H. B. Schlegel, G.E. Scuseria. Gaussian 09 C. 01, Gaussian, Inc. (2010).

Google Scholar

[14] A.D. Becke, J. Chem. Phys. 97 (1992) 9173.

Google Scholar

[15] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.

Google Scholar

[16] S.F. Boys, F. Bernardi, Mol. Phys. 19 (1970) 533.

Google Scholar

[17] H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase Overview with details on alkane and benzene compounds, J. Phys. Chem. B 102 (1998) 7338.

DOI: 10.1021/jp980939v

Google Scholar

[18] Accelrys Software Inc. Materials studio release notes, release 6. 0. Accelrys Software, San Diego. (2011).

Google Scholar

[19] W. Qian, Y. Shu, H. Li, Q. Ma, S. Wang. Simulation Study on the GAP-based comb-like ployurethane modifier used for TNT-based composite explosives. Proceedings of the 17th Seminar on New Trends in Research of Energetic Materials, Pardubice, April 9–11, 2014, 390-399.

Google Scholar

[20] W. Qian, Y. Shu, H. Li, Q. Ma. The effect of HNS on the reinforcement of TNT crystal: a molecular simulation study. J. Mol. Model. 20 (2014) 2461.

DOI: 10.1007/s00894-014-2461-8

Google Scholar

[21] J.J. Xiao, S.Y. Li, J. Chen, G.F. Ji, W. Zhu, F. Zhao, Q. Wu, H.M. Xiao. Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs. J. Mol. Model. 19 (2013) 803−809.

DOI: 10.1007/s00894-012-1607-9

Google Scholar

[22] H.C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72 (1980) 2384−2393.

Google Scholar

[23] M. Parrinello, A. Rahman. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52 (1981) 7182−7190.

DOI: 10.1063/1.328693

Google Scholar

[24] D.G. Pettifor. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8 (1992) 345−349.

Google Scholar

[25] S.F. Pugh. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. A 45 (1954) 823−843.

DOI: 10.1080/14786440808520496

Google Scholar

[26] J. Ye, F.Q. Wu, J.Z. Sun. Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads. Int. J. Rock Mech. & Mining Sci. 46 (2009) 568−576.

DOI: 10.1016/j.ijrmms.2008.08.004

Google Scholar

[27] H. Ren, M. Fang, J. He. Experimental study of acoustic emission activity of alumina under compression. Chin. J. Mater. Eng. 2 (2012) 30−34.

Google Scholar

[28] J.H. Ye, F.Q. Wu, Y. Zhang, H.G. Ji. Estimation of the bi-modulus of materials through deformation measurement in a Brazilian disk test. Int. J. Rock Mech. & Mining Sci. 52 (2012) 122−131.

DOI: 10.1016/j.ijrmms.2012.03.010

Google Scholar