[1]
J. W. A. M. Janssen, H. J. Koeners, C. G. Kruse, and C. L. Habraken. Pyrazoles. XII. The preparation of 3(5)-Nitropyrazoles by Thermal Rearrangement of N-Nitropyrazoles, J. Org. Chem. 38 (1978) 1777−1782.
DOI: 10.1021/jo00950a001
Google Scholar
[2]
S. Nicolich, J. Niles, P. Ferlazzo, D. Doll, P. Braithwaite, N. Rausmussen, M. Ray, M. Gunger and A. Spencer. Recent developments in reduced sensitivity melt pour explosives. 34th International Annual Conference of ICT, Karlsruhe, Germany, June 24–27, 2003, p.135.
Google Scholar
[3]
D. S. Watt, M. D. Cliff. Evaluation of 1, 3, 3 trinitro azetidine (TNAZ)- A High Performance Melt-Castable Explosive. Defence Science and Technology Organisation, Adelaide, Australia, DSTO-TR-1000. (2000).
Google Scholar
[4]
F. Zhao, P. Chen, R. Hu, Y. Luo, Z. Zhang, Y. Zhou, X. Yang, Y. Gao, S. Gao, Q. Shi. Thermochemical Propertiesnand Non-Isothermal Decomposition Reaction Kinetics of 3, 4-Dinitrofurazanfuroxan (DNTF), J. Hazard. Mater. A113 (2004) 67–71.
Google Scholar
[5]
S. Singh, R. Damavarapu, R. Surapaneni, P. Samuel. An insensitive melt-cast energetic material: 1-methyl-2, 4, 5-trinitroimidazole: MTNI. 38th International Annual Conference of ICT, Karlsruhe, Germany, June 30-July 3, 2007, p.147.
Google Scholar
[6]
Q. Ma, Y. J. Shu, G. Luo, L. Chen, B. Zheng, H. Li. Toughening and elasticizing route of TNT based melt-cast explosives, Chin.J. Energ. Mater. 20 (2012) 618–629.
Google Scholar
[7]
P. Ravi, D. M. Badgujar, G. M. Gore, S. P. Tewari, A. K. Sikder. Review on Melt Cast Explosives, Propellants, Explos., Pyrotech. 36 (2011) 393–403.
DOI: 10.1002/prep.201100047
Google Scholar
[8]
D. L. Smith, B. W. Thorpe. Fracture in the high explosive RDX/TNT, J. Mate. Sci. 8 (1973) 757−759.
DOI: 10.1007/bf00561228
Google Scholar
[9]
X.Q. Niu, J.G. Zhang, X.J. Feng, P.W. Chen, T.L. Zhang, S.Y. Wang, S.W. Zhang, Z.N. Zhou, L. Yang. Theoretical investigation on intermolecular interactions between the ingredients TNT and RDX of composition B. Acta Chim. Sinica 69(2011) 1627−1638.
Google Scholar
[10]
W. Kegler. Einige Betrachtungen über die Herstellung Von TNT-RDX-giesslingen. Explosivstoffe 8 (1960) 1−4.
Google Scholar
[11]
Y. Wang, X. Tang. Study on modification of cast TNT-RDX charges. Chin. J. Energ. Mater. 2 (1994) 7−11.
Google Scholar
[12]
National Military Standard of China. Experimental methods of sensitivity and safety GJB/772A-97. (1997).
Google Scholar
[13]
M.J. Frisch, G.W. Trucks, H. B. Schlegel, G.E. Scuseria. Gaussian 09 C. 01, Gaussian, Inc. (2010).
Google Scholar
[14]
A.D. Becke, J. Chem. Phys. 97 (1992) 9173.
Google Scholar
[15]
A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
Google Scholar
[16]
S.F. Boys, F. Bernardi, Mol. Phys. 19 (1970) 533.
Google Scholar
[17]
H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase Overview with details on alkane and benzene compounds, J. Phys. Chem. B 102 (1998) 7338.
DOI: 10.1021/jp980939v
Google Scholar
[18]
Accelrys Software Inc. Materials studio release notes, release 6. 0. Accelrys Software, San Diego. (2011).
Google Scholar
[19]
W. Qian, Y. Shu, H. Li, Q. Ma, S. Wang. Simulation Study on the GAP-based comb-like ployurethane modifier used for TNT-based composite explosives. Proceedings of the 17th Seminar on New Trends in Research of Energetic Materials, Pardubice, April 9–11, 2014, 390-399.
Google Scholar
[20]
W. Qian, Y. Shu, H. Li, Q. Ma. The effect of HNS on the reinforcement of TNT crystal: a molecular simulation study. J. Mol. Model. 20 (2014) 2461.
DOI: 10.1007/s00894-014-2461-8
Google Scholar
[21]
J.J. Xiao, S.Y. Li, J. Chen, G.F. Ji, W. Zhu, F. Zhao, Q. Wu, H.M. Xiao. Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs. J. Mol. Model. 19 (2013) 803−809.
DOI: 10.1007/s00894-012-1607-9
Google Scholar
[22]
H.C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72 (1980) 2384−2393.
Google Scholar
[23]
M. Parrinello, A. Rahman. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52 (1981) 7182−7190.
DOI: 10.1063/1.328693
Google Scholar
[24]
D.G. Pettifor. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8 (1992) 345−349.
Google Scholar
[25]
S.F. Pugh. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. A 45 (1954) 823−843.
DOI: 10.1080/14786440808520496
Google Scholar
[26]
J. Ye, F.Q. Wu, J.Z. Sun. Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads. Int. J. Rock Mech. & Mining Sci. 46 (2009) 568−576.
DOI: 10.1016/j.ijrmms.2008.08.004
Google Scholar
[27]
H. Ren, M. Fang, J. He. Experimental study of acoustic emission activity of alumina under compression. Chin. J. Mater. Eng. 2 (2012) 30−34.
Google Scholar
[28]
J.H. Ye, F.Q. Wu, Y. Zhang, H.G. Ji. Estimation of the bi-modulus of materials through deformation measurement in a Brazilian disk test. Int. J. Rock Mech. & Mining Sci. 52 (2012) 122−131.
DOI: 10.1016/j.ijrmms.2012.03.010
Google Scholar