Research on the Preparation of Nanoporous Copper Using Taguchi Method

Article Preview

Abstract:

In this work, the influences of process parameters including electroplating time, annealing temperature, etchant concentration and dealloying time on the microstructures of nanoporous copper (NPC) were quantitatively evaluated in terms of pore size. Taguchi method was utilized to reduce the number of experiments required for the evaluation. The effect of each parameter variable on the characterization length scale of NPC was quantified and discussed. It was found that the annealing temperature was the most dominant factor influencing the microstructure of NPC and the dealloying time, electroplating time and etchant concentration contributed sequentially weakly to that of NPC.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

238-245

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.W. Li, Y. Zhu, H. Wang and Yi Ding, Nanoporous gold as an active low temperature catalyst toward CO oxidation in hydrogen-rich stream, Sci. Rep. 3 (2013).

DOI: 10.1038/srep03015

Google Scholar

[2] T. You, O. Niwa, M. Tomita, and S. Hirono, Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide, Anal. Chem. 75 (2003) 2080-(2085).

DOI: 10.1021/ac026337w

Google Scholar

[3] J. Weissmueller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Wuerschum, and H. Gleiter, Charge-induced reversible strain in a metal, Science, 300 (2003) 312-315.

DOI: 10.1002/chin.200329012

Google Scholar

[4] A.J. Forty, P. Durkin, A micromorphological study of the dissolution of silver-gold alloys in nitric acid, Philos. Mag. A, 42 (1980) 295-318.

DOI: 10.1080/01418618008239360

Google Scholar

[5] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Evolution of nanoporosity in dealloying, Nature, 410 (2001) 450-453.

DOI: 10.1038/35068529

Google Scholar

[6] D.V. Pugh, A. Dursun, and S.G. Corcoran, Formation of nanoporous platinum by selective dissolution of Cu from Cu0. 75Pt0. 25, J. Mater. Res. 18 (2003) 216-221.

DOI: 10.1557/jmr.2003.0030

Google Scholar

[7] C. Zhao, Z. Qi, X. Wang, and Z.H. Zhang, Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg-Cu alloys, Corros. Sci. 51 (2009) 2120-2125.

DOI: 10.1016/j.corsci.2009.05.043

Google Scholar

[8] X. Lu, T.J. Balk, R. Spolenak, E. Arzt, Dealloying of Au-Ag thin films with a composition gradient: influence on morphology of nanoporous Au, Thin Solid Films, 515 (2007) 7122-7126.

DOI: 10.1016/j.tsf.2007.03.023

Google Scholar

[9] J.F. Huang, I.W. Sun. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers, Adv. Funct. Mater. 15 (2005) 989-994.

DOI: 10.1002/adfm.200400382

Google Scholar

[10] J.R. Hayes, A.M. Hodge, J. Biener, and A.V. Hamza, Monolithic nanoporous copper by dealloying Mn-Cu, J. Mater. Res. 21 (2006) 2611-2616.

DOI: 10.1557/jmr.2006.0322

Google Scholar

[11] A. Mathur, and J. Erlebacher, Size dependence of effective Young's modulus of nanoporous gold, Appl. Phys. Lett. 90 (2007) 061910.

DOI: 10.1063/1.2436718

Google Scholar

[12] H.J. Jiang, K.S. Moon, H. Dong, F. Hua, and C.P. Wong, Size-dependent melting properties of tin nanoparticles, Chem. Phys. Lett. 429 (2006) 492-496.

DOI: 10.1016/j.cplett.2006.08.027

Google Scholar

[13] F.L. Jia, C.F. Yu, K.J. Deng, and L.Z. Zhang, Nanoporous metal (Cu, Ag, Au) films with high surface area: general fabrication and preliminary electrochemical performance, J. Phys. Chem. C, 111 (2007) 8424-8431.

DOI: 10.1021/jp071815y

Google Scholar

[14] K. Sieradzki, Curvature effects in alloy dissolution, J. Electrochem. Soc. 140 (1993) 2868-2872.

DOI: 10.1149/1.2220924

Google Scholar

[15] W.D. Nix, Mechanical properties of thin films, Mater. Trans. A, 20 (1989) 2217-2245.

Google Scholar

[16] Y. Ding, Y.J. Kim, and J. Erlebacher, Nanoporous gold leaf: Ancient technology, Adv. Mater. 16 (2004) 1897-(1990).

DOI: 10.1002/adma.200400792

Google Scholar

[17] J. Erlebacher, K. Sieradzki, Pattern formation during dealloying, Scripta Mater. 49 (2003) 991-996.

DOI: 10.1016/s1359-6462(03)00471-8

Google Scholar