A Nano-Cantilever Bending Method for Interface Cracking in Nanoscale Materials

Article Preview

Abstract:

A nanocantilever bending method is developed to investigate the interface cracking in multilayered nanoscale materials basing on the technology of the focused ion beam (FIB) and the transmission electron microscopy (TEM). With FIB, a nanocantilever specimen consisting of 20-nm-thick copper (Cu) layer and 500-nm-thick silicon nitride (SiN) layer on a silicon (Si) substrate is fabricated from a macroscale multi-layered material (Si/Cu/SiN) with the proposed method. By using a minute loading apparatus, the loading experiment is conducted in TEM, and the crack initiation at the edge of Cu/Si interface in different specimens is in situ observed. The critical stress fields at crack initiation are analyzed with the finite element method, and both normal and shear stresses concentrate at the region of 100 nm from the interface edge in all specimens. In addition, the normal stress is much larger than the shear one. A close observation on stress fields shows that the normal stress field at the area 20 nm–30 nm away from interface edge produces the local criterion for crack initiation at the edge of Cu/Si interface in nanoscale components.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

912-919

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.B. Bogy, Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions, J. Appl. Mech. 38 (1971) 377–386.

DOI: 10.1115/1.3408786

Google Scholar

[2] P.E.W. Labossiere, M.L. Dunn, Fracture initiation at three-dimensional bimaterial interface corners, J. Mech. Phys. Solids 49 (2001) 609–634.

DOI: 10.1016/s0022-5096(00)00043-0

Google Scholar

[3] E.D. Reedy, T.R. Guess, Comparison of butt tensile strength data with interface corner stress intensity factor prediction, Int. J. Solids Strcut. 30 (1993) 2929–2936.

DOI: 10.1016/0020-7683(93)90204-k

Google Scholar

[4] X.J. Fan, H.B. Wang, T.B. Lim, Investigation of the underfill delamination and cracking in flip-chip modules under temperature cyclic loading, IEEE Trans. Compon. Pack. Technol. 24 (2001) 84–91.

DOI: 10.1109/6144.910806

Google Scholar

[5] T. Kitamura, T. Shibutani, T. Ueno, Crack initiation at free edge of interface between thin films in advanced LSI, Engng. Fract. Mech. 69 (2002) 1289–1299.

DOI: 10.1016/s0013-7944(02)00009-7

Google Scholar

[6] T. Kitamura, H. Hirakata, T. Itsuji, Effect of residual stress on delamination from interface edge between nano-films, Engng. Fract. Mech. 70 (2003) 2089–2101.

DOI: 10.1016/s0013-7944(02)00254-0

Google Scholar

[7] T.L. Becker Jr., J.M. McNancy, R.M. Cannon, R.O. Ritchie, Limitations on the use of the mixed-mode delaminating beam test specimen: effect of the size of the region of K-dominance, Mech. Matter. 25 (1997) 291–308.

DOI: 10.1016/s0167-6636(97)00010-0

Google Scholar

[8] S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, Toughness measurement of thin films: a critical review, Surf. Coat. Technol. 198 (2005) 74―84.

Google Scholar

[9] A.A. Volinsky, N.R. Moody, W.W. Gerberich, Interfacial toughness measurements for thin films on substrates, Acta Mater. 50 (2002) 441―466.

DOI: 10.1016/s1359-6454(01)00354-8

Google Scholar

[10] M.P.K. Turunen, P. Marjamaki, M. Paajanen, J. Lahtinen, J.K. Kivilahti, Pull-off test in the assessment of adhesion at printed wiring board metallization/epoxy interface. Microelectron. Reliab. 44 (2004) 993―1007.

DOI: 10.1016/j.microrel.2004.01.001

Google Scholar

[11] Y.G. Wei, J.W. Hutchinson, Interface strength, work of adhesion and plasticity in the peel test, Int. J. of Fract. 93 (1998) 315 – 333.

DOI: 10.1007/978-94-017-2854-6_16

Google Scholar

[12] L.H. Xiao, X.P. Su, J.H. Wang, Y.C. Zhou, A novel blister test to evaluate the interface strength between nickel coating and low carbon steel substrate, Mat. Sci. Engng. A-Struct. 501 (2009) 235―241.

DOI: 10.1016/j.msea.2008.09.077

Google Scholar

[13] P.A. Steinmann, Y. Tardy, H.E. Hintermann, Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load, Thin Solid Films 154 (1987) 333―349.

DOI: 10.1016/0040-6090(87)90377-4

Google Scholar

[14] M.Y. Lu, H.T. Xie, H. Huang, Characterisation of interfacial adhesion of thin film/substrate systems using indentation-induced delamination: A focused review, Key Engng. Mater. 533 (2012) 201―222.

DOI: 10.4028/www.scientific.net/kem.533.201

Google Scholar

[15] F. Shang, T. Kitamura, H. Hirakata, I. Kanno, H. Kotera, K. Terada, Experimental and theoretical investigations of delamination at free edge of interface between piezoelectric thin films on a substrate, Int. J. Solids Struct. 42 (2005) 1729―1741.

DOI: 10.1016/j.ijsolstr.2004.08.004

Google Scholar

[16] R. Dingreville, J. Qu, M. Cherkaoui, Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, J. Mech. Phys. Solids 53 (2005) 1827–1854.

DOI: 10.1016/j.jmps.2005.02.012

Google Scholar

[17] W.D. Nix, Mechanical properties of thin films, Metall. Mater. Trans. 20 (1989) 2217–2245.

Google Scholar

[18] K.S. Lee, S. Wuttiphan, X.Z. Hu, S.K. Lee, B.R. Lawn, Contact-induced transverse fractures in brittle layers on soft substrates: a study on silicon nitride bilayers, J. Am. Ceram. Soc. 81 (1998) 571–580.

DOI: 10.1111/j.1151-2916.1998.tb02376.x

Google Scholar

[19] T. Sumigawa, T. Shishido, T. Murakami, T. Iwasaki, T. Kitamura, Evaluation on plastic deformation property of copper nano-film by nano-scale cantilever specimen, Thin solid films 518 (2010) 6040–6047.

DOI: 10.1016/j.tsf.2010.06.039

Google Scholar