[1]
C.Y.H. Lim, D.K. Leo, J.J.S. Ang, M. Gupta, Wear of magnesium composites reinforced with nano-sized alumina particulates, Wear, 259 (2005) 620-625.
DOI: 10.1016/j.wear.2005.02.006
Google Scholar
[2]
T. Imai, S.W. Lim, D. Jiang, Y. Nishida, Superplasticity of a AlN/Mg-5wt pct Al alloy composite made by a vortex method, Scr. Mater. 36 (1997) 611-616.
DOI: 10.1016/s1359-6462(96)00429-0
Google Scholar
[3]
Q.C. Jiang, X.L. Li, H.Y. Wang, Fabrication of TiC particulate reinforced magnesium matrix composites, Scr. Mater. 48 (2003) 713-717.
DOI: 10.1016/s1359-6462(02)00551-1
Google Scholar
[4]
H.K. Feng, S.R. Yu, Y.L. Li, L.Y. Gong, Microstructure and properties of Sip/Al–Si surface composites prepared by ultrasonic method, Mater. Des. 30 (2009) 2420-2424.
DOI: 10.1016/j.matdes.2008.10.016
Google Scholar
[5]
P. Rohatgi, Cast aluminium-matrix composites for automotive applications, JOM 43 (1991) 10-15.
DOI: 10.1007/bf03220538
Google Scholar
[6]
C.Y.H. Lim, S.C. Lim, M. Gupta, Wear behavior of SiCp-reinforced magnesium matrix composites, Wear 255 (2003) 629-637.
DOI: 10.1016/s0043-1648(03)00121-2
Google Scholar
[7]
J. Yao, W. Li, L. Zhang, F. Wang M. Xue, H. Jiang, J. Lu, Wear mechanism for in situ TiC particle reinforced AZ91 magnesium matrix composites, Tribol. Lett. 38 (2010) 253-257.
DOI: 10.1007/s11249-010-9600-x
Google Scholar
[8]
G. Cao, H. Konishi, X. Li, Recent development on ultrasonic cavitation based solidification processing of bulk magnesium nanocomposites, Int. J Metal Cast. 2(1) (2008) 57-68.
DOI: 10.1007/bf03355422
Google Scholar
[9]
H. Kumar, G.P. Chaudhari, Creep behavior of AS41 alloy matrix nano-composites, Mater. Sci. Eng. A 607 (2014) 435-444.
DOI: 10.1016/j.msea.2014.04.020
Google Scholar
[10]
G. Cao, H. Choi, H. Konishi, S. Kou, R. Lakes, X. Li, Mg-6Zn/1. 5 pct SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing, J Mater. Sci. 43 (2008) 5521-5526.
DOI: 10.1007/s10853-008-2785-9
Google Scholar
[11]
S. Suslick, Y. Didenko, M.M. Fang, T. Hyeon, K.J. Kolbeck, W.B. McNamara, M.M. Midleni, M. Wong, Acoustic cavitation and its chemical consequences, Phil Tans R Soc A 357 (1999) 335-353.
DOI: 10.1098/rsta.1999.0330
Google Scholar
[12]
Z. Trojanova, P. Lukac, Compressive deformation behavior of magnesium alloys. J Mater. Process Technol. 162-163 (2005) 416-421.
Google Scholar
[13]
B. Patel, G.P. Chaudhari, P.P. Bhingole, Microstructural evolution in ultrasonicated AS41 magnesium alloy, Mater. Let. 66 (2012) 335-338.
DOI: 10.1016/j.matlet.2011.08.113
Google Scholar
[14]
P.P. Bhingole, G.P. Chaudhari, S.K. Nath, Processing, microstructure and properties of ultrasonically processed in situ MgO-Al2O3-MgAl2O4 dispersed magnesium alloy composites, Composites: Part A 66 (2014) 209-217.
DOI: 10.1016/j.compositesa.2014.08.001
Google Scholar
[15]
Z. Zhang, D.L. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength, Scr. Mater. 54 (2006) 1321-1326.
DOI: 10.1016/j.scriptamat.2005.12.017
Google Scholar
[16]
Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Mater. Sci. Eng. A 483-484 (2008) 148-152.
DOI: 10.1016/j.msea.2006.10.184
Google Scholar
[17]
K.T. Ramesh, Nanomaterials - Mechanics and Mechanisms, Springer, New York, (2009) 134.
Google Scholar
[18]
G. Gottstein, Physical Foundations of Materials Science, Springer Verlag, Berlin Heidelberg, (2004) 274.
Google Scholar
[19]
N. Saheb, T. Laoui, A.R. Daud, M. Harun, S. Radiman, R. Yahaya, Influence of Ti addition on wear properties of Al-Si eutectic alloys, Wear 249 (2001) 656-661.
DOI: 10.1016/s0043-1648(01)00687-1
Google Scholar