Hybrid Processing of AZ91 Magnesium Alloy/Nano-Al2O3 Composites

Article Preview

Abstract:

In the present work mechanical and wear behaviour of AZ91 magnesium alloy based composites, reinforced with nanoAl2O3 particles is studied. The composites with different amount of alumina particles are fabricated by a hybrid processing approach. The hybrid processing involved alumina particles dispersion in molten AZ91 alloy by mechanical stirring assisted with ultrasonic processing. Dry sliding wear tests are performed using a pin on disc apparatus against hardened steel at loads ranging from 4.9 N to 14.7 N. The microstructural investigation revealed that, a refined microstructure is obtained because of the heterogeneous nucleation induced by ultrasonic processing and nanoAl2O3 dispersion. Hardness, yield strength and maximum compressive stress of the nanocomposites are found to be superior to that of the matrix alloy. The resistance against wear is increased due to incorporation of reinforced nanoAl2O3particles. The wear rate of nanocomposite is decreased with increasing the amount of the reinforcement. The identified wear mechanisms are abrasion and oxidation.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

783-788

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.Y.H. Lim, D.K. Leo, J.J.S. Ang, M. Gupta, Wear of magnesium composites reinforced with nano-sized alumina particulates, Wear, 259 (2005) 620-625.

DOI: 10.1016/j.wear.2005.02.006

Google Scholar

[2] T. Imai, S.W. Lim, D. Jiang, Y. Nishida, Superplasticity of a AlN/Mg-5wt pct Al alloy composite made by a vortex method, Scr. Mater. 36 (1997) 611-616.

DOI: 10.1016/s1359-6462(96)00429-0

Google Scholar

[3] Q.C. Jiang, X.L. Li, H.Y. Wang, Fabrication of TiC particulate reinforced magnesium matrix composites, Scr. Mater. 48 (2003) 713-717.

DOI: 10.1016/s1359-6462(02)00551-1

Google Scholar

[4] H.K. Feng, S.R. Yu, Y.L. Li, L.Y. Gong, Microstructure and properties of Sip/Al–Si surface composites prepared by ultrasonic method, Mater. Des. 30 (2009) 2420-2424.

DOI: 10.1016/j.matdes.2008.10.016

Google Scholar

[5] P. Rohatgi, Cast aluminium-matrix composites for automotive applications, JOM 43 (1991) 10-15.

DOI: 10.1007/bf03220538

Google Scholar

[6] C.Y.H. Lim, S.C. Lim, M. Gupta, Wear behavior of SiCp-reinforced magnesium matrix composites, Wear 255 (2003) 629-637.

DOI: 10.1016/s0043-1648(03)00121-2

Google Scholar

[7] J. Yao, W. Li, L. Zhang, F. Wang M. Xue, H. Jiang, J. Lu, Wear mechanism for in situ TiC particle reinforced AZ91 magnesium matrix composites, Tribol. Lett. 38 (2010) 253-257.

DOI: 10.1007/s11249-010-9600-x

Google Scholar

[8] G. Cao, H. Konishi, X. Li, Recent development on ultrasonic cavitation based solidification processing of bulk magnesium nanocomposites, Int. J Metal Cast. 2(1) (2008) 57-68.

DOI: 10.1007/bf03355422

Google Scholar

[9] H. Kumar, G.P. Chaudhari, Creep behavior of AS41 alloy matrix nano-composites, Mater. Sci. Eng. A 607 (2014) 435-444.

DOI: 10.1016/j.msea.2014.04.020

Google Scholar

[10] G. Cao, H. Choi, H. Konishi, S. Kou, R. Lakes, X. Li, Mg-6Zn/1. 5 pct SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing, J Mater. Sci. 43 (2008) 5521-5526.

DOI: 10.1007/s10853-008-2785-9

Google Scholar

[11] S. Suslick, Y. Didenko, M.M. Fang, T. Hyeon, K.J. Kolbeck, W.B. McNamara, M.M. Midleni, M. Wong, Acoustic cavitation and its chemical consequences, Phil Tans R Soc A 357 (1999) 335-353.

DOI: 10.1098/rsta.1999.0330

Google Scholar

[12] Z. Trojanova, P. Lukac, Compressive deformation behavior of magnesium alloys. J Mater. Process Technol. 162-163 (2005) 416-421.

Google Scholar

[13] B. Patel, G.P. Chaudhari, P.P. Bhingole, Microstructural evolution in ultrasonicated AS41 magnesium alloy, Mater. Let. 66 (2012) 335-338.

DOI: 10.1016/j.matlet.2011.08.113

Google Scholar

[14] P.P. Bhingole, G.P. Chaudhari, S.K. Nath, Processing, microstructure and properties of ultrasonically processed in situ MgO-Al2O3-MgAl2O4 dispersed magnesium alloy composites, Composites: Part A 66 (2014) 209-217.

DOI: 10.1016/j.compositesa.2014.08.001

Google Scholar

[15] Z. Zhang, D.L. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength, Scr. Mater. 54 (2006) 1321-1326.

DOI: 10.1016/j.scriptamat.2005.12.017

Google Scholar

[16] Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Mater. Sci. Eng. A 483-484 (2008) 148-152.

DOI: 10.1016/j.msea.2006.10.184

Google Scholar

[17] K.T. Ramesh, Nanomaterials - Mechanics and Mechanisms, Springer, New York, (2009) 134.

Google Scholar

[18] G. Gottstein, Physical Foundations of Materials Science, Springer Verlag, Berlin Heidelberg, (2004) 274.

Google Scholar

[19] N. Saheb, T. Laoui, A.R. Daud, M. Harun, S. Radiman, R. Yahaya, Influence of Ti addition on wear properties of Al-Si eutectic alloys, Wear 249 (2001) 656-661.

DOI: 10.1016/s0043-1648(01)00687-1

Google Scholar