Key Engineering Materials
Vol. 660
Vol. 660
Key Engineering Materials
Vol. 659
Vol. 659
Key Engineering Materials
Vol. 658
Vol. 658
Key Engineering Materials
Vols. 656-657
Vols. 656-657
Key Engineering Materials
Vol. 655
Vol. 655
Key Engineering Materials
Vol. 654
Vol. 654
Key Engineering Materials
Vols. 651-653
Vols. 651-653
Key Engineering Materials
Vol. 650
Vol. 650
Key Engineering Materials
Vol. 649
Vol. 649
Key Engineering Materials
Vol. 648
Vol. 648
Key Engineering Materials
Vol. 647
Vol. 647
Key Engineering Materials
Vols. 645-646
Vols. 645-646
Key Engineering Materials
Vol. 644
Vol. 644
Key Engineering Materials Vols. 651-653
Paper Title Page
Abstract: Rotary swaging is a well established cold forming process e.g. in the automotive industry. In order to modify the material properties by swaging systematically, a new process of swaging with asymmetrical strokes of the forming dies is investigated. The newly developed tools feature flat surfaces and do not represent the geometry of the formed part as in conventional swaging. Numerical simulation and physical tests are carried out with special regard to the resulting geometry, mechanical properties and the microstructure. During these tests copper wires with diameter d0=1 mm are formed. Regarding the microstructure in the longitudinal section of formed specimens, elongation of grains in the central part and grain size reduction in the boundary area are observed. Furthermore, this approach opens up new possibilities to configure the geometry of wires. 2D-simulation is applied and discussed in the paper to investigate change of the processed geometry (cross-section) and shear strain distribution during the rotary swaging process.
627
Abstract: Within the German Collaborative Research Center 39 PT-PIESA the forming of micro cavities into aluminum sheets is one challenging task. During this forming process high forces and stresses occur which lead to a high tool wear. Hence, the actually applied cold forming process should be replaced by a warm forming process. This paper shows the tribological investigations for the warm forming process. Within the experiments the barrel compression test is used to determine the friction conditions by varying the size of the cylindrically shaped samples of AlMg4,5Mn0,7, the forming degree and the lubrication condition (dry, graphite, forming oil). The flat punches were made from hardened steel 1.3343. The friction factor was calculated, and surface roughness was evaluated by 3D-laser microscopy. The experiments show that the friction factor increases, especially at forming degrees below 1 and for small specimen size, compared to cold forming processes. In addition to that, an influence of the lubrication condition onto the surface roughness was observed. For experiments conducted with graphite, the surface roughness is significantly higher than for samples, which were formed dryly or with forming oil.
633
Abstract: Processing by severe plastic deformation (SPD) may be defined as such metals forming procedure in which a very high strain is imposed on a bulk material. This paper investigates the effect of different equal channel angular pressing (ECAP) routes and number of ECAP passes on resulting microstructure, mechanical properties and creep behaviour of selected materials. The distinction between various ECAP routes (A, B and C) and the difference in number of ECAP passes applied may lead to variations both in the macroscopic distortions of the individual grains and in the capability to develop a reasonably homogeneous and equiaxed ultrafine-grained microstructure. Experimental materials were processed by ECAP at room temperature using a die with an internal angle of 90° between the two parts of the channel. The ECAP pressing was performed by different routes up to 12 ECAP passes. Tensile creep tests were conducted at temperatures 473 - 673 K and at different applied stresses on ECAP materials and, for comparison purposes, on their unpressed states. Microstructure of samples was characterized by scanning electron microscope (SEM) equipped with the electron backscatter diffraction (EBSD) unit. In conclusion, the ECAP processing route and number of applied ECAP passes could play an important role in creep behaviour and their effect may be different for particular materials. The highest differences in processing routes were revealed for materials especially at lower number of ECAP passes. However, a little apparent dependence of the creep properties was observed during subsequent pressing.
639
Abstract: Wires with 1 mm initial diameter have been reduced between 10 and 64 percent at different temperatures and strain rates by infeed rotary swaging, which is an incremental cold forming process mainly used for rods and pipes. The volume fraction of martensite in the deformed wires has been determined by X-Ray diffraction and by magnetic induction for different processing parameters. Measurements show that for already small percentage of reduction, martensite is present in the wires and its amount changes with the strain rate and temperature. While for smaller strain rates at room temperature the formation of martensite is promoted, it is restrained for higher strain rates and higher temperatures. Results also reveal that the martensite distribution in the sample is inhomogeneous. Further investigations have been made to analyze the microstructure by optical microscopy and to determine mechanical properties by tensile testing.
645
Abstract: Incremental equal channel angular pressing (I-ECAP) is a process used for production of continuous ultrafine grained bars, plates and sheets. Normally the thickness of the processed billet is kept unchanged in consecutive passes to enable repetitive insertion into the same die. This is achieved by controlling the bottom dead centre of the reciprocating punch. However, if a final product requires being thinner and therefore longer, the bottom position of the punch can be lowered before the last pass. Going further, the bottom position of the punch can be changed during the process, which opens up a possibility to vary billet thickness along its length. Such a product, especially sheet, can serve as a preform for further metal forming operations and is known as tailored blank. This paper will show examples of varying thickness sheets produced by different configurations of I-ECAP. Experimental and finite element results will be presented.
651
Abstract: With the help of an Assisting Electrode (AE), non-conductive ceramics can be machined using Electrical Discharge Machining (EDM) process. The AE helps start the EDM process and the intrinsic conductive layer (ICL) ensures that the electrical contact between the workpiece and the generator is maintained. However, the understanding of EDM process of non-conductive ceramics is limited due to the typical characteristic of the process: the geometric dimension of the discharge region is limited to few micrometers and the duration of the dielectric discharge is in the range of few microseconds making it difficult to directly observe the spark and the associated crater formation phenomenon. Analyzing the electrical signals during the EDM process could provide an insight of the process. This paper presents a study on analyzing the electric pulses occurring during the EDM process of a conductive workpiece (copper) and a non-conductive workpiece (Si3N4 ceramics). Typical pulses occurring during the EDM of a metal and a non-conductive ceramics are identified with the signal recorded at a sampling rate of 2.5 GS/s. Sampling rate of 25 MS/s is used to monitor the pulses occurring while machining a hole with depth of 1 mm. The pulses during EDM of non-conductive materials are significantly different than those during EDM of metals. Four most outstanding differences have been identified in terms of the ringing behavior of the voltage signal, the recharge time required to reach the set value of open voltage, the presence of the reverse current and the value of the peak current detected in case of Si3N4. The pulses monitored with lower sampling frequency was characterized and discriminated into sparks, arcs and short circuits. The percentage of the discriminated pulses for varying machining depth of the test structure has been presented.
659
Abstract: The article presents results of selective laser melting of Inconel 718 superalloy. It was studied phase microstructure of the material obtained by selective laser melting and also the material after heat treatment. The phase composition of the initial powder material, the specimens after selective laser melting before and after heat treatment was studied. The effect of heat treatment on microstructure and mechanical properties of the specimens was shown. It was studied the mechanical behavior of the manufactured specimens before and after heat treatment at room and elevated temperatures as well. The results of impact tests and fractography of the specimens are presented. Mechanical tests showed that the specimens after heat treatment have decent mechanical properties comparable to hot-rolled material. Fractography showed that the obtained material is characterized by ductile failure mode with local elements of brittle fracture.
665
Abstract: To fabricate aluminum foam having nonporous surface layer (sandwich structure), the selective laser melting (SLM) was applied to fill surface pores of a commercial closed-cell type aluminum foam with aluminum. A commercially pure aluminum powder was continuously melted and solidified by irradiating with a pulsed Nd:YAG laser with a maximum average power of 50 W. As a result, the aluminum foam having nonporous surface layer (SLM surface layer) was successfully fabricated. The compressive deformation behavior of the fabricated aluminum foam having the SLM surface layers was investigated with uniaxial compression test. The plateau stress of the aluminum foam having the SLM surface layers was improved by approximately 20%, compared with that of the aluminum foam without the SLM surface layers.
671
Abstract: The article presents results of a study of phase composition and microstructure of initial material and samples obtained by selective laser melting of titanium-based alloy, as well as samples after heat treatment. The effect of heat treatment on microstructure and mechanical properties of specimens was shown. It was studied mechanical behavior of manufactured specimens before and after heat treatment at room and elevated temperatures as well. The heat treatment allows obtaining sufficient mechanical properties of material at room and elevated temperatures such as increase in ductility of material. The fractography of samples showed that they feature ductile fracture with brittle elements.
677
Abstract: The paper deals with finite element modelling (FEM) of the process of micro-electrical discharge machining of micro-holes aided by ultrasonic longitudinal oscillations of workpiece (μEDM+US). FEM of the process comprises two components: the thermal one due to μEDM removal mechanism, and the ultrasonic one caused by cavitation effect generated inside the lateral working gap. The FEM results obtained are validated by experimental data in terms of craters dimensions produced by single discharges, leading to optimization strategy of process parameters.
683