Electrophoretic Co-Deposition of Chitosan and Graphene Oxide Results in Antibacterial Coatings for Medical Applications

Abstract:

Article Preview

Chitosan – graphene oxide (GO) composite coatings intended for antibacterial applications were obtained by cathodic electrophoretic deposition (EPD) on stainless steel. The coatings were characterized using SEM, FTIR, contact angle and roughness measurements and by antibacterial studies against E.coli. The coating was observed to consist of a polymer matrix with embedded, agglomerated graphene oxide sheets. A decrease in bacteria cell viability of at least 50 % was measured on the chitosan – GO surface in comparison to uncoated stainless steel.

Info:

Periodical:

Edited by:

A.R. Boccaccini, J.H. Dickerson, B. Ferrari, O. Van der Biest and T. Uchikoshi

Pages:

176-182

Citation:

A. L. Metze et al., "Electrophoretic Co-Deposition of Chitosan and Graphene Oxide Results in Antibacterial Coatings for Medical Applications", Key Engineering Materials, Vol. 654, pp. 176-182, 2015

Online since:

July 2015

Export:

Price:

$41.00

[1] M. Geetha et al,. Prog. Mater. Sci. 2009, 54, 397–425.

[2] K Duan, R. Wang, J. Mater. Chem. 2006, 16, 2309–2321.

[3] D. Davies, Nat. Rev. Drug Discovery 2003, 2, 114–122.

[4] F. Ding et al., Carbohydrate Polymers 2013, 98, 1547-1552.

[5] F. Ordikhani et al., Mater. Sci. and Engin.: C 2014, 41, 240-248.

[6] J. Venkatesan, S. Kim, Mar. Drugs 2010, 8, 2252–2266.

[7] M. Dash et al., Progress in Polymer Science 2011, 36, 981-1014.

[8] B.L. Butler et al., J. Food Sci. 1996, 61, 953-956.

[9] S. Liu et al., ACS Nano 2011, 5, 6971.

[10] W. Hu et al., ACS Nano 2010, 4, 4317.

[11] H. Pandey et al., Nanoscale 2011, 3, 4104.

[12] A.M. Pinto et al., Colloids and Surf. B: Biointerfaces 2013, 111, 188-202.

[13] L.Y. Feng et al., Biomaterials 2011, 32 (11), 2930–2937.

[14] C. Peng et al., Small 2010, 6 (15), 1686–1692.

[15] S.J. He et al., Adv, Funct. Mater. 2010, 20 (3), 453–459.

[16] Y. Wang et al., J. Am. Chem. Soc. 2010, 132 (27), 9274–9276.

[17] X.M. Sun et al., Nano Res. 2008, 1 (3), 203–212.

[18] A.R. Boccaccini et al., J. R. Soc. Interface 2010, 7, 581-613.

[19] A. Chavez-Valdez et al., J. Phys. Chem. B, 2013, 117 (6), 1502–1515.

[20] O.O. van der Biest, L.J. Vandeperre, Ann. Rev. Mater. Sci. 1999, 29, 327-352.

[21] I. Zhitomirsky, Adv. In Colloid and Interf. Sci. 2002, 97, 279-317.

[22] A. Simchi et al., Materials Letters 2009, 63, 2253-2256.

[23] M. Diba et al., Carbon 2014, 67, 656-661.

[24] M. Rai et al., Biotech. Adv. 2009, 27, 76-83.

[25] C. Paluszkiewicz et al., Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 784-788.

[26] J. Tsibouklis et al., Biomaterials 1999, 20, 1229-1235.

[27] J. Hasan et al., Trends in Biotechnology 2013, 31, 295-304.

[28] D.A. Stout et al., in Woodhead Publishing Series in Biomaterials 2013, 119-157.