[1]
Malhotra, V., Role of fly ash in reducing greenhouse gas emissions during the manufacturing of portland cement clinker. Advances in Concrete Technologies in the Middle East, (2008): pp.19-20.
Google Scholar
[2]
Mustafa Al Bakri A.M., et al., The effect of curing temperature on physical and chemical properties of geopolymers. Physics Procedia, (2011). 22: pp.286-291.
Google Scholar
[3]
Davidovits, J. Properties of geopolymer cements. in First international conference on alkaline cements and concretes. (1994).
Google Scholar
[4]
Duxson, P., et al., Geopolymer technology: the current state of the art. Journal of materials science, (2007). 429: pp.2917-2933.
Google Scholar
[5]
Wang, H., H. Li, and F. Yan, Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, (2005). 2681: pp.1-6.
DOI: 10.1016/j.colsurfa.2005.01.016
Google Scholar
[6]
Rashad, A.M. and S.R. Zeedan, The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Construction and Building Materials, (2011). 257: pp.3098-3107.
DOI: 10.1016/j.conbuildmat.2010.12.044
Google Scholar
[7]
Natali Murri, A., et al., High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cement and Concrete Research, (2013). 43: pp.51-61.
DOI: 10.1016/j.cemconres.2012.09.011
Google Scholar
[8]
Sabir, B., S. Wild, and J. Bai, Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites, (2001). 236: pp.441-454.
DOI: 10.1016/s0958-9465(00)00092-5
Google Scholar
[9]
Liew, Y.M., et al., Investigating the possibility of utilization of kaolin and the potential of metakaolin to produce green cement for construction purposes–a review. Australian Journal of Basic and Applied Sciences, (2011). 59: pp.441-449.
Google Scholar
[10]
Bernal, S.A., et al., Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. Journal of materials science, (2011). 4616: pp.5477-5486.
DOI: 10.1007/s10853-011-5490-z
Google Scholar
[11]
Kong, D.L., J.G. Sanjayan, and K. Sagoe-Crentsil, Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and Concrete Research, (2007). 3712: pp.1583-1589.
DOI: 10.1016/j.cemconres.2007.08.021
Google Scholar
[12]
Zhang, H.Y., et al., Fiber Reinforced Geopolymers for Fire Resistance Applications. Procedia Engineering, (2014). 71: pp.153-158.
DOI: 10.1016/j.proeng.2014.04.022
Google Scholar
[13]
Zhang, Y.J., et al., Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature. Journal of Non-Crystalline Solids, (2012). 3583: pp.620-624.
DOI: 10.1016/j.jnoncrysol.2011.11.006
Google Scholar
[14]
Fernández-Jiménez, A., et al., Alkaline activation of metakaolin–fly ash mixtures: Obtain of Zeoceramics and Zeocements. Microporous and Mesoporous Materials, (2008). 1081: pp.41-49.
DOI: 10.1016/j.micromeso.2007.03.024
Google Scholar
[15]
Heah, C.Y., et al., Potential application of kaolin without calcine as greener concrete: a review. (2011).
Google Scholar
[16]
Prasad, M., K. Reid, and H. Murray, Kaolin: processing, properties and applications. Applied clay science, (1991). 62: pp.87-119.
DOI: 10.1016/0169-1317(91)90001-p
Google Scholar
[17]
Mohsen, Q. and N.Y. Mostafa, Investigating the possibility of utilising low kaolinitic clays in production of geopolymer bricks. Ceramics-Silikaty, (2010). 542: pp.160-168.
Google Scholar
[18]
Temuujin, J., et al., Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. Applied clay science, (2009). 463: pp.265-270.
DOI: 10.1016/j.clay.2009.08.015
Google Scholar
[19]
Temuujin, J., et al., Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation. Journal of hazardous materials, (2010). 1801: pp.748-752.
DOI: 10.1016/j.jhazmat.2010.04.121
Google Scholar
[20]
Zhang, H.Y., et al., Development of metakaolin–fly ash based geopolymers for fire resistance applications. Construction and Building Materials, (2014). 55: pp.38-45.
DOI: 10.1016/j.conbuildmat.2014.01.040
Google Scholar
[21]
Mustafa Al Bakri A.M., et al., Fly ash porous material using geopolymerization process for high temperature exposure. International journal of molecular sciences, (2012). 134: pp.4388-4395.
DOI: 10.3390/ijms13044388
Google Scholar