[1]
Shakir, A. A., Naganathan, S., Mustapha, K. N. (2013). Development of Bricks from Waste Material: A Review Paper. Australian Journal of Basic and Applied Sciences, 7(8), 812-818.
Google Scholar
[2]
Swanepoel, J. C., Strydom, C. A. Utilisation of fly ash in a geopolymeric material. (2002). Applied Geochemistry, 17, 1143–1148.
DOI: 10.1016/s0883-2927(02)00005-7
Google Scholar
[3]
Fatih, T., and Umit, A. Utilization of fly ash in manufacturing of building bricks. 2001 International Ash Utilization Symposium, Center For Applied Energy Research, University of Kentucky. http: /www. flyash. info, 1-6.
Google Scholar
[4]
Ahmari, S., Zhang, L. (2012). Production of eco-friendly bricks from copper mine tailings through geopolymerization. Construction and Building Materials, 29, 323–331.
DOI: 10.1016/j.conbuildmat.2011.10.048
Google Scholar
[5]
Shahid, M. A., Pawade, P. Y. (2014). Reuse of Natural Waste Material for Making Light Weight Bricks. International Journal of Scientific & Technology Research, 3(6), 49-53.
Google Scholar
[6]
Abdul Aleem, M. I., and Arumairaj, P. D. Geopolymer Concrete: A Review. (2012). International Journal of Engineering Sciences and Emerging Technologies. 1(2), 118-122.
Google Scholar
[7]
Noor Haida M. S. Carbonation of Geopolymer Concrete. Universiti Teknologi Malaysia. (2011).
Google Scholar
[8]
http: /www. slideshare. net/sakshichemsci/foaming-agent-clc-blocks-bricks-and-cellular-lightweight-concrete.
Google Scholar
[9]
Aeslina A. K. and Mohajerani, A. Bricks: An Excellent Building Material for Recycling Wastes – A Review. Proceedings of the IASTED International Conference Environmental Management and Engineering (EME 2011), July 4 – 6, 2011, Calgary, AB, Canada, 108 – 115.
DOI: 10.2316/p.2011.736-029
Google Scholar
[10]
Kamarudin, H., Mustafa Al Bakri, A. M., Binhussain, M., Ruzaidi, C. M., Luqman, M., Heah, C. Y., Liew, Y. M. (2011).
DOI: 10.1016/j.phpro.2011.11.048
Google Scholar
[11]
Heah, C. Y., Kamarudin, H., Mustafa Al Bakri, A. M., Binhussain, M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M., Liew, Y. M. (2011). Effect of curing profile on Kaolin-based Geopolymers. Physics Procedia, 22, 305-311.
DOI: 10.1016/j.phpro.2011.11.048
Google Scholar
[12]
Tamizi, S. M., Mustafa Al Bakri, A. M., Kamarudin, H., Ruzaidi, C. M., Liyana, J., Aeslina, A. K. (2014).
Google Scholar
[13]
Saidi, N., Samet, B., Baklouti, S. (2013). Effect of Composition on Structure and Mechanical Properties of Metakaolin Based PSS-Geopolymer. International Journal of Material Science, 3(4), 145-151.
DOI: 10.14355/ijmsci.2013.0304.03
Google Scholar
[14]
Zivica, V., Palou, M., and Ifka, T. (2012). High strength metakaolin based geopolymer. Building Research Journal, 60, 231-246.
Google Scholar
[15]
Guo, X., Shi, H., Warren A. D. (2010). Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement and concrete composites, 32, 142-147.
DOI: 10.1016/j.cemconcomp.2009.11.003
Google Scholar
[16]
Mustafa Al Bakri, A. M., Kamarudin, H., Binhussain, M., Khairul Nizar, I., Rafiza, A. R., Zarina, Y. (2011).
Google Scholar
[17]
Mustafa Al Bakri, A. M., Kamarudin, H., Binhussain, M., Khairul Nizar, I., Rafiza, A. R., Zarina, Y. (2012). The processing, characterization and properties of fly ash-based geopolymer concrete. Rev. Adv. Mater. Sci., 30, 90-97.
DOI: 10.1166/asl.2013.5187
Google Scholar
[18]
Usha, S., Nair, D. G., Vishnudas, S. (2014). Geopolymer binder from industrial wastes: A review. International Journal of Civil Engineering and Technology, 5(12), 219-225.
Google Scholar
[19]
Mustafa Al Bakri, A. M., Kamarudin, H., Binhussain, M., Khairul Nizar, I., Zarina, Y., and Rafiza, A. R. (2012). Fly ash-based geopolymer lightweight concrete using foaming agent. International Journal of Molecular Sciences, 13, 7186-7198.
DOI: 10.3390/ijms13067186
Google Scholar
[20]
Siram, K. K. B. (2012). Cellular lightweight concrete blocks as a replacement of burnt clay bricks. International Journal of Engineering and Advanced Technology, 2(2), 149-151.
Google Scholar
[21]
Gorhan, G., and Kurklu G. (2014). The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites. Part B: Vol. 58, 371-377.
DOI: 10.1016/j.compositesb.2013.10.082
Google Scholar
[22]
Nyale, S. M., Babajide, O. O., Birch, G. D., Boke, N., Petrik, L. F. (2013). Synthesis and characterization of coal fly ash-based foamed geopolymer. Procedia Environmental Sciences, 18, 722-730.
DOI: 10.1016/j.proenv.2013.04.098
Google Scholar
[23]
Marunmale, A. K., and Attar, A. C. (2014). Designing, developing and testing of cellular lightweight concrete brick wall built in Rat-Trap bond. Current Trends in Technology and Sciences, 3(4), 331- 336.
Google Scholar
[24]
Liu, M. Y. J., Alengaram, U. J., Mohd Zamin, J., and Mo, K. H. (2014). Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete. Energy and Buildings, 72, 238-245.
DOI: 10.1016/j.enbuild.2013.12.029
Google Scholar
[25]
Khalid A. M. G. Mechanical and physical properties of fly ash foamed concrete. Master of Civil Engineering Thesis, Faculty of Civil and Environmental Engineering, University Tun Hussein Onn Malaysia, (2011).
DOI: 10.30880/ijie.2018.10.09.010
Google Scholar
[26]
Aeslina A. K., Mohajerani, A., Roddick, F., and Buckeridge, J. (2010).
Google Scholar
[27]
Vaou, V., Panias, D. (2010). Thermal insulating foamy geopolymers from perlite. Minerals Engineering, 23, 1146–1151.
DOI: 10.1016/j.mineng.2010.07.015
Google Scholar
[28]
Bakharev, T. (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35, 1233– 1246.
DOI: 10.1016/j.cemconres.2004.09.002
Google Scholar
[29]
Rattanasak, U., and Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22, 1073-1078.
DOI: 10.1016/j.mineng.2009.03.022
Google Scholar
[30]
Fahrizal, Z., Mahyuddin, R. (2011). Performance and characteristics foamed concrete mix design with silica fume for housing development. Int. J. Acad. Res., 3, 1198-1206.
Google Scholar
[31]
Weng, C. H., Lin, D. F., Chiang, P. C. (2003). Utilization of sludge as brick materials. Advances in Environmental Research, 7, 679-685.
DOI: 10.1016/s1093-0191(02)00037-0
Google Scholar
[32]
Ling, I. H., and Teo, D. C. L. (2011). Reuse of waste rice husk ash and expanded polystyrene beads as an alternative raw material in lightweight concrete bricks. International Journal of Chemical and Environmental Engineering, 2(5), 328-332.
Google Scholar
[33]
Kumar, S., Kumar, R., Alex, T. C., Bandopadhyay, A., Mehrotra, S. P. (2005).
Google Scholar
[34]
Veiseh, S., and Yousefi, A. A. (2003). The use of polystyrene in lightweight brick production. Iranian Polymer Journal, 12(4), 323-329.
Google Scholar
[35]
Fifinatasha S. N., Mustafa Al Bakri, M. A., Kamarudin, H., Sandu, I., Ruzaidi, C. M., Binhussain, M., Zarina Y., And Andrei, V. S. (2014).
Google Scholar
[36]
Norlia M. I., Shamshinar S., Roshazita C. A., Nur Liza R., and Tengku Nuraiti T. I. (2013). Performance of lightweight foamed concrete with waste clay brick as coarse aggregate. APCBEE Procedia, 5, 497-501.
DOI: 10.1016/j.apcbee.2013.05.084
Google Scholar