Anisotropic Mechanical Properties of Pure Magnesium Analyzed by In Situ Nanoindentation

Article Preview

Abstract:

In this work, correlation between nanomechanical properties and crystallographic orientation of grains in 99.9 % magnesium is presented. Crystallographic orientation of individual grains was obtained by scanning electron microscope (SEM) equipped with electron backscatter diffraction (EBSD) detector. Hardness and elastic modulus of grains with known orientation were subsequently determined by in situ nanoindentation in SEM. We show that hardness decreases with increasing angle between the direction of indentation and the c-axis of grains, while elastic modulus varies non-monotonically.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-14

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Sánchez-Martín, M. T. Pérez-Prado, J. Segurado, J. Bohlen, I. Gutiérrez-Urrutia, J. Llorca, J. M. Molina-Aldareguia, Measuring the critical resolved shear stresses in Mg alloys by instrumented nanoindentation, Acta Materialia 71 (2014) 283-292.

DOI: 10.1016/j.actamat.2014.03.014

Google Scholar

[2] T. B. Britton, H. Liang, F. P. E. Dunne, A. J. Wilkinson, The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations, Proc. R. Soc. A 466 (2010) 695-719.

DOI: 10.1098/rspa.2009.0455

Google Scholar

[3] C. Fizanne-Michel, M. Cornen, P. Castany, I. Péron, T. Gloriant, Determination of hardness and elastic modulus inverse pole figures of a polycrystalline commercially pure titanium by coupling nanoindentation and EBSD techniques, Mater. Sci. Eng. A 613 (2014).

DOI: 10.1016/j.msea.2014.06.098

Google Scholar

[4] E. Merson, R. Brydson, A. Brown, The effect of crystallographic orientation on the mechanical properties of titanium, J. Phys. Conf. Ser. 126 (2008) 012020.

DOI: 10.1088/1742-6596/126/1/012020

Google Scholar

[5] D. Tromans, Elastic anisotropy of hcp metal crystals and polycrystals, IJRRAS 6 (2011) 462-483.

Google Scholar

[6] H. E. Friedrich, B. L. Mordike, Magnesium Technology: Metallurgy, Design Data, Applications, Springer-Verlag, Berlin, (2006).

Google Scholar

[7] H. Somekawa, T. Mukai, Nanoindentation creep behavior of grain boundary in pure magnesium, Phil. Mag. Lett. 90 (2010) 883-890.

DOI: 10.1080/09500839.2010.514577

Google Scholar

[8] Information on http: /www. struers. com.

Google Scholar

[9] A. C. Fischer-Cripps, Nanoindentation, 3rd ed., Springer Verlag, New York, (2003).

Google Scholar

[10] W. C. Oliver, G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3-20.

DOI: 10.1557/jmr.2004.19.1.3

Google Scholar

[11] G. M. Pharr, E. G. Herbert, Y. Gao, The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations, Annu. Rev. Mater. Res. 40 (2010) 271-292.

DOI: 10.1146/annurev-matsci-070909-104456

Google Scholar