Nanoindentation Study of the Influence of the Loading Rate on the Deformation of Metallic Glasses

Article Preview

Abstract:

Nanoindentation experiments at the loading rates from 0.05 to 100 mN.s-1 on the amorphous FeNiB alloy were executed. We found that the serrations in the load-displacement (P-h) curve are more pronounced at lower loading rates and gradually disappear upon increasing loading rate. We have estimated the contribution of the inhomogeneous plastic deformation from pop-in events on the P-h curves. The pop-in population was compared with the morphology of indents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-26

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.S. Argon, J. Megusar, N.J. Grant, Shear band induced dilations in metallic glasses, Scripta metall. 19 (1985) 591-596. DOI: 10. 1016/0036-9748(85)90343-6.

DOI: 10.1016/0036-9748(85)90343-6

Google Scholar

[2] W.J. Wright, R. Saha, W.D. Nix, Deformation mechanisms of Zr40Ti14Ni10Cu12Be24 bulk metallic glass, Mater. Trans. 42 (2001) 642-649.

Google Scholar

[3] V. Ocelik, K. Csach, A. Kasardova, J. Miskuf, H. P Svec, K. Kristiakova, I. Matko, Activation energy distribution in nanocrystallization kinetics of amorphous Fe73. 5Cu1Nb3Si13. 5B9 alloy Scripta Mater. 35 (1996).

Google Scholar

[4] V. Ocelik, P. Diko, V. Hajko, J. Miskuf, P. Duhaj, Fracture-toughness of some metallic glasses, J. Mater. Sci. 22 (1987) 2305-2308. DOI: 10. 1007/BF01082108.

DOI: 10.1007/bf01082108

Google Scholar

[5] C.A. Schuh, T.G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater. 51 (2003) 87-99. DOI: 10. 1016/S1359-6454(02)00303-8.

DOI: 10.1016/s1359-6454(02)00303-8

Google Scholar

[6] C.A. Schuh, T.G. Nieh, A survey of instrumented indentation studies on metallic glasses, J. Mater. Res. 19 (2004) 46-57. DOI: 10. 1557/jmr. 2004. 19. 1. 46.

DOI: 10.1557/jmr.2004.19.1.46

Google Scholar

[7] C.A. Schuh, A.L. Lund, T.G. Nieh, New regime of homogeneous flow in the deformation map of metallig glasses: elevated temperature nanoindentation experiments and mechanistic modeling, Acta Mater. 52 (2004).

DOI: 10.1016/j.actamat.2004.09.005

Google Scholar

[8] Y.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa, A.I. Tyurin, Serrated plastic flow during nanoindentation of a bulk metallic glass, Scripta Mater. 45 (2001) 947-952. DOI: 10. 1016/S1359-6462(01)01116-2.

DOI: 10.1016/s1359-6462(01)01116-2

Google Scholar

[9] H.S. Chen, Plastic flow in metallic glasses under compression, Scr. Metall. 7 (1973) 931-935. DOI: 10. 1016/0036-9748(73)90143-9.

DOI: 10.1016/0036-9748(73)90143-9

Google Scholar

[10] A.L. Greer, A. Castellero, S.V. Madge, I.T. Walker, J.R. Wilde, Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys, Mater. Sci. Eng. A 375-377 (2004).

DOI: 10.1016/j.msea.2003.10.032

Google Scholar

[11] J. Jang, B.G. Yoo, J.Y. Kim, Rate-dependent inhomogeneous-to-homogeneous transition of plastic flows during nanoindentation of bulk metallic glasses: Fact or artifact?, Appl. Phys. Let. 90 (2007) 211906. DOI: 10. 1063/1. 2742286.

DOI: 10.1063/1.2742286

Google Scholar