Nanoindentation in Metallic Glasses with Different Plasticity

Article Preview

Abstract:

Nanoindentation and thermomechanical experiments on three types of metallic glasses with different glass forming ability were carried out. The nanoindentation behaviour at room temperature was associated with the creep at elevated temperatures. Different discontinuity populations and their shape observed on the nanoindentation loading curves were compared with morphology of plastic deformed indent regions. The influence of the differences in thermal stability of studied alloys on the nanoindentation in these alloys were studied as well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-22

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.A. Schuh, A.L. LundN, T.G. Nieh, New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling, Acta Mater. 52 (2004).

DOI: 10.1016/j.actamat.2004.09.005

Google Scholar

[2] C.A. Schuh, T.G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater. 51 (2003) 87-99. DOI: 10. 1016/S1359-6454(02)00303-8.

DOI: 10.1016/s1359-6454(02)00303-8

Google Scholar

[3] W.J. Wright, R. Saha, W.D. Nix, Deformation mechanisms of Zr40Ti14Ni10Cu12Be24 bulk metallic glass, Mater. Trans. 42 (2001) 642-649.

Google Scholar

[4] Y.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa, A.I. Tyurin, Serrated plastic flow during nanoindentation of a bulk metallic glass, Scripta Mater. 45 (2001) 947-952. DOI: 10. 1016/S1359-6462(01)01116-2.

DOI: 10.1016/s1359-6462(01)01116-2

Google Scholar

[5] B. Shen, A. Inoue, Enhancement of the fracture strength and glass-forming ability of CoFeTaB bulk glassy alloy, J. Phys.: Condens. Matter 17 (2005) 5647. DOI: 10. 1088/0953-8984/17/37/003.

DOI: 10.1088/0953-8984/17/37/003

Google Scholar

[6] J. J. Lewandowski, A.L. Greer, Temperature rise at shear bands in metallic glasses, Nature Materials 5 (2006) 15-18. DOI: 10. 1038/nmat1536.

DOI: 10.1038/nmat1536

Google Scholar

[7] V.Z. Bengus, E.D. Tabachnikova, S.E. Shumilin et al., Some peculiarities of ductile shear failure of amorphous alloy ribbons, Int. J. Rapid Solid. 8 (1993) 21.

Google Scholar

[8] V.Z. Bengus, P. Diko, K. Csach, V. Ocelik, J. Miskuf, V. Ocelik, E. B, Korolkova E.D. Tabachnikova, P. Duhaj, Failure crack orientation at ductile shear fracture of Fe80-xNixB20, Journal of Materials Science 25 (1990).

DOI: 10.1007/bf01045356

Google Scholar

[9] B. Yang et al., Dynamic evolution of nanoscale shear bands in a bulk-metallic glass, Applied Physics Letters 86 (2005) 141904. DOI: 10. 1063/1. 1891302.

Google Scholar

[10] G. Vlasák, P. Švec, P. Duhaj, Application of isochronal dilatation measurements for determination of viscosity of amorphous alloys, Mat. Sci. Eng. A 304-306 (2001) 472. DOI: 10. 1016/S0921-5093(00)01497-0.

DOI: 10.1016/s0921-5093(00)01497-0

Google Scholar